Contreras, Jhonatan und Denzler, Joachim (2019) Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds. In: IGARSS 2019 - IEEE International Geoscience and Remote Sensing Symposium, Seiten 5236-5239. IEEE. IGARSS 2019 - IEEE International Geoscience and Remote Sensing Symposium, 2019-07-28 - 2019-08-02, Yokohama, Japan. doi: 10.1109/IGARSS.2019.8899303. ISBN 978-1-5386-9154-0. ISSN 2153-7003.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/8899303/authors#authors
Kurzfassung
In this paper, we propose a deep learning-based framework which can manage large-scale point clouds of outdoor scenes with high spatial resolution. For large and high-resolution outdoor scenes, point-wise classification approaches are often an intractable problem. Analogous to Object-Based Image Analysis (OBIA), our approach segments the scene by grouping similar points together to generate meaningful objects. Later, our net classifies segments instead of individual points using an architecture inspired by PointNet, which applies Edge convolutions. This approach is trained using both visual and geometrical information. Experiments show the potential of this task even for small training sets. Furthermore, we can show competitive performance on a Large-scale Point Cloud Classification Benchmark
elib-URL des Eintrags: | https://elib.dlr.de/133222/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 14 November 2019 | ||||||||||||
Erschienen in: | IGARSS 2019 - IEEE International Geoscience and Remote Sensing Symposium | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/IGARSS.2019.8899303 | ||||||||||||
Seitenbereich: | Seiten 5236-5239 | ||||||||||||
Verlag: | IEEE | ||||||||||||
Name der Reihe: | IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium | ||||||||||||
ISSN: | 2153-7003 | ||||||||||||
ISBN: | 978-1-5386-9154-0 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Semantic segmentation, Point Clouds, Deep Learning, Outdoor Scenes. | ||||||||||||
Veranstaltungstitel: | IGARSS 2019 - IEEE International Geoscience and Remote Sensing Symposium | ||||||||||||
Veranstaltungsort: | Yokohama, Japan | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 28 Juli 2019 | ||||||||||||
Veranstaltungsende: | 2 August 2019 | ||||||||||||
Veranstalter : | IEEE | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||
Standort: | Jena | ||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Bürgerwissenschaften | ||||||||||||
Hinterlegt von: | Contreras, Jhonatan | ||||||||||||
Hinterlegt am: | 23 Jan 2020 15:52 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags