Debus, Charlotte und Rüttgers, Alexander und Petrarolo, Anna und Kobald, Mario und Siggel, Martin (2019) High-performance data analytics of hybrid rocket fuel combustion data using different machine learning approaches. 2020 AIAA SciTech Forum, 2020-01-06 - 2020-01-10, Orlando, FL, USA. doi: 10.2514/6.2020-1161.
PDF
- Nur DLR-intern zugänglich
2MB | |
PDF
- Nur DLR-intern zugänglich
10MB |
Offizielle URL: https://arc.aiaa.org/doi/10.2514/6.2020-1161
Kurzfassung
Hybrid rocket fuels pose several advantages over conventional solid or liquid bi-propellant solutions in terms of safety, cost and thrust controllability. For paraffin-based fuels, the droplet entrainment process plays a major role in the combustion kinetics. This phenomenon is well reported in the literature, but dedicated quantitative analyses of optical measurements are still lacking. In this study, k-means++ clustering with different numbers of clusters and spectral clustering were employed to high-speed video data of four different combustion experiments with varying fuel and oxidizer configurations. The goal was to identify short-term turbulences and irregularities in the burning kinetics, which could further resolve the process of droplet entrainment. Our results show that k-means++ is able to identify main flow phases, but cannot resolve short-term structures, even with a large number of clusters k = 20. Spectral clustering, which is based on graph theory, requires the computation of an adjacency matrix, which becomes computationally expensive for large data sets. We implemented a highly parallel version of the algorithm, which allowed computation of the pairwise similarities on 30 000 video images in approximately 1 h (150 processes). The similarity matrix gives a qualitative assessment of the combustion kinetics, and several short-term irregularities could be identified. Full spectral clustering of the data yielded quantitative partitioning of the individual frames into long-term main components and short-term fluctuations. Results indicate that a fuel combination of paraffin with the addition of 5% polymer yields the most homogeneous combustion kinetics, and that the oxidizer flow has a substantial influence. The distributed implementation of the algorithm allows future investigations to be conducted on many experiments, giving more insight into the mechanisms of the combustion process.
elib-URL des Eintrags: | https://elib.dlr.de/132472/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Zusätzliche Informationen: | 2020 AIAA Propellants and Combustion Best Paper Award | ||||||||||||||||||||||||
Titel: | High-performance data analytics of hybrid rocket fuel combustion data using different machine learning approaches | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Dezember 2019 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.2514/6.2020-1161 | ||||||||||||||||||||||||
Name der Reihe: | AIAA Scitech 2020 Forum | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Hybride Raketentreibstoffe, Machinelles Lernen, Clustering | ||||||||||||||||||||||||
Veranstaltungstitel: | 2020 AIAA SciTech Forum | ||||||||||||||||||||||||
Veranstaltungsort: | Orlando, FL, USA | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 6 Januar 2020 | ||||||||||||||||||||||||
Veranstaltungsende: | 10 Januar 2020 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben SISTEC (alt) | ||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Simulations- und Softwaretechnik > High Performance Computing Institut für Raumfahrtantriebe | ||||||||||||||||||||||||
Hinterlegt von: | Rüttgers, Dr. Alexander | ||||||||||||||||||||||||
Hinterlegt am: | 13 Dez 2019 12:53 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags