Wöhler, Leslie und Zou, Yuxin und Mühlhausen, Moritz und Albuquerque, Georgia und Magnor, Marcus (2019) Learning a Perceptual Quality Metric for Correlation in Scatterplots. In: VMV 2019 - Vision, Modeling and Visualization. The Eurographics Association. Vision, Modeling and Visualization (VMV), 2019-09-30 - 2019-10-02, Rostock, Germany. doi: 10.2312/vmv.20191318. ISBN 978-3-03868-098-7.
PDF
671kB |
Offizielle URL: https://diglib.eg.org/xmlui/handle/10.2312/2632811
Kurzfassung
Visual quality metrics describe the quality and efficiency of multidimensional data visualizations in order to guide data analysts during exploration tasks. Current metrics are usually based on empirical algorithms which do not accurately represent human perception and therefore often differ from the analysts' expectations. We propose a new perception-based quality metric using deep learning that rates the correlation of data dimensions visualized by scatterplots. First, we created a data set containing over 15,000 pairs of scatterplots with human annotations on the perceived correlation between the data dimensions. Afterwards, we trained two different Convolutional Neural Networks (CNN), one extracts features from scatterplot images and the other directly from data vectors. We evaluated both CNNs on our test set and compared them to previous visual quality metrics. The experiments show that our new metric is able to represent human perception more accurately than previous methods.
elib-URL des Eintrags: | https://elib.dlr.de/132277/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Learning a Perceptual Quality Metric for Correlation in Scatterplots | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 30 September 2019 | ||||||||||||||||||||||||
Erschienen in: | VMV 2019 - Vision, Modeling and Visualization | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.2312/vmv.20191318 | ||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||
Verlag: | The Eurographics Association | ||||||||||||||||||||||||
ISBN: | 978-3-03868-098-7 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | visual analytics, visual quality metrics, deep learning, maschine learning | ||||||||||||||||||||||||
Veranstaltungstitel: | Vision, Modeling and Visualization (VMV) | ||||||||||||||||||||||||
Veranstaltungsort: | Rostock, Germany | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 30 September 2019 | ||||||||||||||||||||||||
Veranstaltungsende: | 2 Oktober 2019 | ||||||||||||||||||||||||
Veranstalter : | University of Rostock, , Germany | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Simulations- und Softwaretechnik > Software für Raumfahrtsysteme und interaktive Visualisierung | ||||||||||||||||||||||||
Hinterlegt von: | Albuquerque, Dr.-Ing. Georgia | ||||||||||||||||||||||||
Hinterlegt am: | 18 Dez 2019 13:17 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags