elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Constraining the early evolution of Venus and Earth through atmospheric Ar, Ne isotope and bulk K/U ratios

Lammer, H und Leizinger, M und Scherf, M und Odert, P. und Burger, C. und Kubyshkina, Daria und Johnstone, Colin und Maindl, T. und Schäfer, C.M. und Güdel, Manuel und Tosi, Nicola und Nikolaou, Athanasia und Marq, E und Erkaev, N. V. und Noack, L und Kislyakova, K. G. und Fossati, L. und Pilat-Lohinger, Elke und Ragossing, F und Dorfi, E.A. (2020) Constraining the early evolution of Venus and Earth through atmospheric Ar, Ne isotope and bulk K/U ratios. Icarus, 339. Elsevier. doi: 10.1016/j.icarus.2019.113551. ISSN 0019-1035.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0019103519301290

Kurzfassung

The atmospheric noble gas isotope and elemental bulk ratios on Venus and Earth provide important information on their origin and evolution. If the protoplanets grew to a certain mass (i.e. > 0.5 MEarth), they could have captured H2-dominated primordial atmospheres by accreting gas from the circumstellar disk during the formation of the Solar System, which were then quickly lost by hydrodynamic escape after the disk dissipated. In such a case, the EUV-driven hydrodynamic flow of H atoms dragged heavier elements with it at different rates, leading to changes in their initial isotope ratios. For reproducing Earth and Venus present atmospheric 36Ar/38Ar, 20Ne/22Ne, 36Ar/22Ne, isotope and bulk K/U ratios we applied hydrodynamic upper atmosphere escape and Smooth Particle Hydrodynamics (SPH) impact models for the calculation of captured H2-dominated primordial atmospheres for various protoplanetary masses. We investigated a wide range of possible EUV evolution tracks of the young Sun and initial atmospheric compositions based on mixtures of captured nebula gas, outgassed and delivered material from ureilite, enstatite and carbonaceaous chondrites. Depending on the disk lifetime of ≈ 3-5 Myr (Bollard et al., 2017; Wang et al., 2017) and the composition of accreted material after disk dispersal, we find from the reproduction of the present atmospheric Ar, Ne, and bulk K/U ratios, that early Earth’s evolution can be explained if proto-Earth had accreted masses between ≈ 0.53 − 0.58 MEarth by the time the nebula gas dissipated. If proto-Earth would have accreted a higher mass during the disk lifetime the present atmospheric Ar and Ne isotope ratios can not be reproduced with our model approach. For masses > 0.75MEarth, Earth would have had a problem to get get rid of its primordial atmosphere. If proto-Earth accreted ≈ 0.53 − 0.58MEarth of enstatite-dominated material as suggested by Dauphas (2017) during the disk lifetime, it would have captured a tiny primordial atmosphere that was lost ≈3 Myr after the disk dissipated. In such a case we find that the present-day atmospheric Ar and Ne isotope ratios can be best reproduced if the post-nebula impactors contained ≈ 5% weakly depleted carbonaceous chondritic material and ≈ 95% enstatite chondrites that are strongly depleted in Ar, Ne and moderately volatile elements like potassium. If higher amounts of carbonaceous chondrites were involved in early Earth’s accretion as recently suggested by Schiller et al. (2018), then the Earth’s present atmospheric Ar and Ne ratios can only be reproduced if the involved carbonaceous chondritic post-nebula material was also highly depleted in these noble gases and/or had to be partially be delivered as long as the primordial atmosphere was yet escaping. As long as primordial atmospheres surround the growing protoplanets the abundance of their volatile elements is overwritten by their respective captured solar-like atmospheric abundances. Therefore the initial composition of the protoplanets at the disk dispersal time can not be identified by our method. For masses less than 0.5 MEarth atmospheric escape cannot explain the present-day ratios, i.e. if Earth grew slower then these ratios have to be explained differently (Marty, 2012). If proto-Venus captured a primordial atmosphere it should have grown to masses of ≈ 0.8 − 1.0 MVenus during the time until the disk dissipated and if early Venus accreted its main mass during the disk lifetime than the present atmospheric Ar and Ne isotope ratios and the observed K/U ratios on Venus surface can also be reproduced by the escape of a captured primordial atmosphere that is lost within ≤ 100 Myr, if the Sun was born between a weakly and moderately active young G star. New precise re-measurements of atmospheric noble gases are necessary by future Venus missions to better constrain the material that was involved in the planet’s accretion history and possibly also the EUV activity evolution of the young Sun. In addition, measurements of other moderately volatile element and isotope ratios on the surface such as Rb/U, 64Zn/66Zn, and 39K/41K can give an insight on whether Venus accreted slow or fast, i.e. almost to its final mass within the disk lifetime.

elib-URL des Eintrags:https://elib.dlr.de/132018/
Dokumentart:Zeitschriftenbeitrag
Titel:Constraining the early evolution of Venus and Earth through atmospheric Ar, Ne isotope and bulk K/U ratios
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Lammer, HIWF Österreichische Akademie der WissenschaftenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Leizinger, MSpace Research Institute, Austrian Academy of Sciences, Graz, Austria; Institute of Physics/IGAM, University of Graz, AustriaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Scherf, MSpace Research Institute, Austrian Academy of Sciences, Graz, AustriaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Odert, P.Insitute for Physics, Graz, AustriaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Burger, C.Department of Astrophysics, University of Vienna, AustriaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kubyshkina, DariaSpace Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, A-8041 Graz, Austria 0000-0001-9137-9818NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Johnstone, ColinUniversity of Vienna, Department of AstrophysicsNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Maindl, T.Department of Astrophysics, University of Vienna, AustriaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schäfer, C.M.Institute of Astronomy and Astrophysics, University of Tübingen, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Güdel, ManuelInstitute for Astronomy, University of Vienna, Türkenschanzstr. 17, A-1180 Vienna, AustriaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Tosi, Nicolanicola.tosi (at) dlr.dehttps://orcid.org/0000-0002-4912-2848NICHT SPEZIFIZIERT
Nikolaou, AthanasiaAthanasia.Nikolaou (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Marq, ELATMOS, Université de Versailles Saint-Quentin-en-Yvelines, Guyancourt, FranceNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Erkaev, N. V.Institute for Computational Modelling, Krasnoyarsk, Russian FederationNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Noack, LDepartment of Earth Sciences / Institute of Geological Sciences, Free University BerlinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kislyakova, K. G.University of Vienna, Department of AstrophysicsNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fossati, L.Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042, Graz, AustriaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Pilat-Lohinger, ElkeInstitute of Astrophysics, University of Vienna, Vienna, Austria.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ragossing, FDepartment of Astrophysics, University of Vienna, AustriaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dorfi, E.A.Department of Astrophysics, University of Vienna, AustriaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:März 2020
Erschienen in:Icarus
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:339
DOI:10.1016/j.icarus.2019.113551
Verlag:Elsevier
ISSN:0019-1035
Status:veröffentlicht
Stichwörter:Planetary atmospheres, magma oceans, atmospheric escape, nobel gases
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Exploration des Sonnensystems
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Hinterlegt von: Tosi, Dr. Nicola
Hinterlegt am:04 Dez 2019 13:11
Letzte Änderung:28 Mär 2023 23:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.