elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Spaceborne EO and a combination of inverse and forward modelling for monitoring lava flow advance.

Rogic, N. und Cappello, A. und Ganci, G. und Maturilli, Alessandro und Rymer, H. und Blake, S. und Ferrucci, F. (2019) Spaceborne EO and a combination of inverse and forward modelling for monitoring lava flow advance. Remote Sensing, 11 (24), Seite 3032. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs11243032. ISSN 2072-4292.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.mdpi.com/journal/remotesensing/special_issues/volcano_rs

Kurzfassung

Spectral emissivity is a seldom measured parameter, and it is generally assumed to be a constant. However, by ignoring the variation of emissivity with temperature for spaceborne data and modelling applications, we demonstrate that substantial uncertainties in determination of land surface temperatures (LST) are introduced. Errors in computation of lava surface temperature consequently produce errors in radiant fluxes and forecasted lava flow lengths. We aim here to improve the understanding of the relationship between emissivity and temperature by carrying out a multi-stage experiment for the 2017 Mt Etna (Italy) eruption, by combining laboratory and spaceborne and numerical modelling data. Our laboratory-based Fourier Transform Infra-red (FTIR) results indicate that emissivity and temperature are inversely correlated, which supports the argument that emissivity of molten material is significantly lower than that of the same material in its solid state. Recent research suggests that emissivity of molten lava may be as low as 0.60. Our forward-modelling tests using MAGFLOW Cellular Automata suggest that a 35% emissivity variation (0.95 to 0.60) can produce up to 46% overestimation in simulated/forecasted lava flow lengths (compared to actual observed). In comparison, our simulation using a ‘two-component’ emissivity approach compares well with the actual 2017 lava flow lengths. We evaluated the influence of variable emissivity on lava surface temperatures using spaceborne data by performing several parametrically controlled assessments, using both constant (‘uniform’) and a ‘two-component’ emissivity approach (i.e. for melt and cooled lava). Computed total radiant fluxes, using the same spaceborne scene (Landsat 8), indicate a ≤15 % difference between emissivity endmembers (i.e. 0.95 and 0.60). These results further suggest a radiant flux variation/uncertainty bordering at lower boundary values of the moderate-to-high temporal resolution spaceborne data (MODIS & SEVIRI), acquired for the same target area (and the same time interval). These findings may have considerable impact on civil protection decisions made during volcanic crisis involving lava flows as they approach protected or populated areas.

elib-URL des Eintrags:https://elib.dlr.de/131991/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:Bisher nur online erschienen.
Titel:Spaceborne EO and a combination of inverse and forward modelling for monitoring lava flow advance.
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rogic, N.Open UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Cappello, A.INGVNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ganci, G.INGVNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Maturilli, AlessandroAlessandro.Maturilli (at) dlr.dehttps://orcid.org/0000-0003-4613-9799NICHT SPEZIFIZIERT
Rymer, H.Open UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Blake, S.Open UniversityNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ferrucci, F.School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes MK7 6AA, UK; Department of Environmental and Chemical Engineering, University of Calabria, 87036 Rende (CS), ItalyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:16 Dezember 2019
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.3390/rs11243032
Seitenbereich:Seite 3032
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:remote sensing, volcanic hazard modelling, emissivity uncertainty, FTIR spectroscopy, Mount Etna.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt BepiColombo - MERTIS und BELA
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Leitungsbereich PF
Hinterlegt von: Maturilli, Dr. Alessandro
Hinterlegt am:17 Dez 2019 07:57
Letzte Änderung:17 Dez 2019 07:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.