Hänsch, Ronny und Hellwich, Olaf (2019) Online Random Forests For Large-Scale Land-Use Classification From Polarimetric SAR Images. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 5808-5811. IEEE. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2019-07-28 - 2019-08-02, Yokohama, Japan. doi: 10.1109/IGARSS.2019.8898021. ISBN 978-1-5386-9154-0. ISSN 2153-7003.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
The deployment of numerous air- and space-borne remote sensing sensors as well as new data policies led to a tremendous increase of available data. While methods such as neural networks are trained by online or batch processing, i.e. keeping only parts of the data in the memory, other methods such as Random Forests require offline processing, i.e. keeping all data in the memory of the computer. The latter are therefore often trained on a small subset of a larger data set that is hoped to be representative instead of exploiting the information contained in all samples. This paper shows that Random Forests can be trained by batch processing too making their application to large data sets feasible without further constraints. The benefits of this training scheme are illustrated for the use case of land-use classification from PolSAR imagery.
elib-URL des Eintrags: | https://elib.dlr.de/131039/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Online Random Forests For Large-Scale Land-Use Classification From Polarimetric SAR Images | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 14 November 2019 | ||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/IGARSS.2019.8898021 | ||||||||||||
Seitenbereich: | Seiten 5808-5811 | ||||||||||||
Verlag: | IEEE | ||||||||||||
Name der Reihe: | IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium | ||||||||||||
ISSN: | 2153-7003 | ||||||||||||
ISBN: | 978-1-5386-9154-0 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Classification, Random Forest, Batch processing, Online learning | ||||||||||||
Veranstaltungstitel: | IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||
Veranstaltungsort: | Yokohama, Japan | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 28 Juli 2019 | ||||||||||||
Veranstaltungsende: | 2 August 2019 | ||||||||||||
Veranstalter : | IEEE GRSS | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Flugzeug-SAR | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||
Hinterlegt von: | Hänsch, Ronny | ||||||||||||
Hinterlegt am: | 21 Nov 2019 15:04 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:34 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags