Hüsch, Marc und Schyska, Bruno und von Bremen, Lueder (2018) CorClustST - Correlation-based clustering of big spatio-temporal datasets. Future Generation Computer Systems-the International Journal of Grid Computing and Escience, 110, Seiten 610-619. Elsevier. doi: 10.1016/j.future.2018.04.002. ISSN 0167-739X.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB | |
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0167739X17313353?via%3Dihub
Kurzfassung
Increasing amounts of high-velocity spatio-temporal data reinforce the need for clustering algorithms which are effective for big data processing and data reduction. As currently applied spatio-temporal clustering algorithms have certain drawbacks regarding the comparability of the results, we propose an alternative spatio-temporal clustering technique which is based on empirical spatial correlations over time. As a key feature, CorClustST makes it easily possible to compare and interpret clustering results for different scenarios such as multiple underlying variables or varying time frames. In a test case, we show that the clustering strategy successfully identifies increasing spatial correlations of wind power forecast errors in Europe for longer forecast horizons. An extension of the clustering algorithm is finally presented which allows for a large-scale parallel implementation and helps to circumvent memory limitations. The proposed method will especially be helpful for researchers who aim to preprocess big spatio-temporal datasets and who intend to compare clustering results and spatial dependencies for different scenarios.
elib-URL des Eintrags: | https://elib.dlr.de/130950/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | CorClustST - Correlation-based clustering of big spatio-temporal datasets | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 7 April 2018 | ||||||||||||||||
Erschienen in: | Future Generation Computer Systems-the International Journal of Grid Computing and Escience | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 110 | ||||||||||||||||
DOI: | 10.1016/j.future.2018.04.002 | ||||||||||||||||
Seitenbereich: | Seiten 610-619 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
ISSN: | 0167-739X | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Clustering Big spatio-temporal data Spatial dependence Preprocessing Data reduction | ||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||
HGF - Programm: | TIG Technologie, Innovation und Gesellschaft | ||||||||||||||||
HGF - Programmthema: | Erneuerbare Energie- und Materialressourcen für eine nachhaltige Zukunft | ||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemanalyse | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Systemanalyse und Technikbewertung (alt) | ||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||
Institute & Einrichtungen: | Institut für Vernetzte Energiesysteme > Energiesystemanalyse | ||||||||||||||||
Hinterlegt von: | von Bremen, Lüder | ||||||||||||||||
Hinterlegt am: | 16 Dez 2019 12:30 | ||||||||||||||||
Letzte Änderung: | 18 Dez 2020 13:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags