Ahmadian, Nima und Ullmann, Tobias und Verrelst, Jochem und Borg, Erik und Zölitz, Reinhard und Conrad, Christopher (2019) Biomass Assessment of Agricultural Crops Using Multi-temporal Dual-Polarimetric TerraSAR-X Data. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 87 (4), Seiten 159-175. Springer. doi: 10.1007/s41064-019-00076-x. ISSN 2512-2789.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://link.springer.com/content/pdf/10.1007%2Fs41064-019-00076-x.pdf
Kurzfassung
The biomass of three agricultural crops, winter wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and canola (Brassica napus L.), was studied using multi-temporal dual-polarimetric TerraSAR-X data. The radar backscattering coefficient sigma nought of the two polarization channels HH and VV was extracted from the satellite images. Subsequently, combinations of HH and VV polarizations were calculated (e.g. HH/VV, HH + VV, HH × VV) to establish relationships between SAR data and the fresh and dry biomass of each crop type using multiple stepwise regression. Additionally, the semi-empirical water cloud model (WCM) was used to account for the effect of crop biomass on radar backscatter data. The potential of the Random Forest (RF) machine learning approach was also explored. The split sampling approach (i.e. 70% training and 30% testing) was carried out to validate the stepwise models, WCM and RF. The multiple stepwise regression method using dual-polarimetric data was capable to retrieve the biomass of the three crops, particularly for dry biomass, with R2 > 0.7, without any external input variable, such as information on the (actual) soil moisture. A comparison of the random forest technique with the WCM reveals that the RF technique remarkably outperformed the WCM in biomass estimation, especially for the fresh biomass. For example, the R2 > 0.68 for the fresh biomass estimation of different crop types using RF whereas WCM show R2 < 0.35 only. However, for the dry biomass, the results of both approaches resembled each other.
elib-URL des Eintrags: | https://elib.dlr.de/130836/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Biomass Assessment of Agricultural Crops Using Multi-temporal Dual-Polarimetric TerraSAR-X Data | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Oktober 2019 | ||||||||||||||||||||||||||||
Erschienen in: | PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 87 | ||||||||||||||||||||||||||||
DOI: | 10.1007/s41064-019-00076-x | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 159-175 | ||||||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||||||
Name der Reihe: | Springer PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science | ||||||||||||||||||||||||||||
ISSN: | 2512-2789 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | TerraSAR-X · Agricultural crop · Biomass · Stepwise regression · Water cloud model (WCM) · Random Forest · DEMMIN | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren | ||||||||||||||||||||||||||||
Standort: | Neustrelitz | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Nationales Bodensegment | ||||||||||||||||||||||||||||
Hinterlegt von: | Borg, Prof.Dr. Erik | ||||||||||||||||||||||||||||
Hinterlegt am: | 26 Nov 2019 12:30 | ||||||||||||||||||||||||||||
Letzte Änderung: | 23 Jul 2022 13:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags