elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Electronic Transport in Alloys with Phase Separation (Composites)

Sonntag, Joachim und Lenoir, Bertrand und Ziolkowski, Pawel (2019) Electronic Transport in Alloys with Phase Separation (Composites). Open Journal of Composite Materials. Scientific Research Publishing. doi: 10.4236/ojcm.2019.91002. ISSN 2164-5612.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Kurzfassung

A measure for the efficiency of a thermoelectric material is the figure of merit defined by ZT = S2T/ρκ, where S, ρ and κ are the electronic transport coefficients, Seebeck coefficient, electrical resistivity and thermal conductiviy, respectively. T is the absolute temperature. Large values for ZT have been realized in nanostructured materials such as superlattices, quantum dots, nanocomposites, and nanowires. In order to achieve further progress, (1) a fundamental understand- ing of the carrier transport in nanocomposites is necessary, and (2) effective experimental methods for designing, producing and measuring new material compositions with nanocomposite-structures are to be applied. During the last decades a series of formulas has been derived for calculation of the electronic transport coefficients in composites and disordered alloys. Along the way, some puzzling phenomenons have been solved as why there are simple metals with positive thermopower? and what is the reason for the phenomenon of the ”Giant Hall effect”? and what is the reason for the fact that amorphous composites can exist at all? In the present review article, (1), formulas will be presented for calculation of σ(= 1/ρ), κ, S, and R in composites. R, the Hall coefficient, provides additional informations about the type of the dominant electronic carriers and their densities. It will be shown that these formulas can also be applied successfully for calculation of S, ρ, κ and R in nanocomposites if certain conditions are taken into account. Regarding point (2) we shall show that the combinatorial development of materials can provide unfeasible results if applied noncritically.

elib-URL des Eintrags:https://elib.dlr.de/130532/
Dokumentart:Zeitschriftenbeitrag
Titel:Electronic Transport in Alloys with Phase Separation (Composites)
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sonntag, JoachimTE Connectivity Sensors Germany GmbH, Dortmund, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lenoir, BertrandInstitut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, 2 Allée André Guinier-Campus ARTEM, Nancy Cedex, FranceNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ziolkowski, PawelGerman Aerospace Center, Institute of Materials Research, Köln, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:28 Januar 2019
Erschienen in:Open Journal of Composite Materials
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.4236/ojcm.2019.91002
Verlag:Scientific Research Publishing
ISSN:2164-5612
Status:veröffentlicht
Stichwörter:Hall effect; giant Hall effect; Seebeck coefficient (thermopower); electron density; Conductivity; thermal conductivity; composites; nanocomposites; percolation theory
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Antriebssysteme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L ER - Engine Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Turbinentechnologien (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Werkstoff-Forschung > Thermoelektrische Materialien und Systeme
Hinterlegt von: Yasseri, Mohammad
Hinterlegt am:15 Nov 2019 12:55
Letzte Änderung:15 Nov 2019 12:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.