elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Prospects of model-based fault diagnostics for dynamic traffic control systems on freeways

Neumann, Thorsten und Estel, Anja (2020) Prospects of model-based fault diagnostics for dynamic traffic control systems on freeways. In: 30th European Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety Assessment and Management Conference, PSAM15 2020. Research Publishing (S). ESREL 2020 PSAM 15, 2020-11-01 - 2020-11-06, Venedig, Italien. doi: 10.3850/978-981-14-8593-0_4035-cd. ISBN 978-981148593-0.

[img] PDF
677kB

Offizielle URL: https://www.rpsonline.com.sg/proceedings/esrel2020/

Kurzfassung

Dynamic traffic control systems are important technical assets of the road infrastructure with regard to the efficiency and safety of freeway traffic on highly utilized roads. Based on distributed system architectures, they typically consist of numerous local sensors for measuring traffic flow and environmental conditions. Centralized and decentralized hardware and software components are responsible for data processing (including rule-based automated traffic control) and data communication. Human interaction in terms of manual control (as, for instance, in case of accident warnings) as well as continuous system monitoring is realized by operators in a traffic control center. Finally, from the viewpoint of the road users, the most visible components of such traffic control systems are the dynamic traffic signs used for displaying warnings (e.g., congestion, wet or icy road conditions, or accidents), speed limits, and possible restrictions on overtaking. Obviously, dynamic traffic control systems as described above are highly complex assets and thus difficult and expensive to maintain. Moreover, fault identification usually is an effortful manual process currently realized more or less systematically by experienced operators and maintenance engineers in the traffic control center and in the field. Model-based tools for automatic failure detection and diagnosis (i.e., identification of failure reasons) such as Bayesian networks provide the chance to significantly improve current maintenance practices including a possible shift from mostly corrective towards more condition-based and predictive maintenance. The present contribution discusses these potentials from a scientific as well as a practitioner's point of view including a critical review of current maintenance strategies and previous work on failure diagnostics for dynamic traffic control systems.

elib-URL des Eintrags:https://elib.dlr.de/130336/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Prospects of model-based fault diagnostics for dynamic traffic control systems on freeways
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Neumann, ThorstenThorsten.Neumann (at) dlr.dehttps://orcid.org/0000-0002-9236-0585NICHT SPEZIFIZIERT
Estel, AnjaLandesbetrieb Straßenbau NRW, LeverkusenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juni 2020
Erschienen in:30th European Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety Assessment and Management Conference, PSAM15 2020
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.3850/978-981-14-8593-0_4035-cd
Verlag:Research Publishing (S)
ISBN:978-981148593-0
Status:veröffentlicht
Stichwörter:Road traffic, dynamic traffic control, fault diagnostics, Bayesian networks, PHM, maintenance
Veranstaltungstitel:ESREL 2020 PSAM 15
Veranstaltungsort:Venedig, Italien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:1 November 2020
Veranstaltungsende:6 November 2020
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - D.MoVe (alt)
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Datenerfassung und Informationsgewinnung
Hinterlegt von: Neumann, Dr.-Ing. Thorsten
Hinterlegt am:26 Jun 2020 12:16
Letzte Änderung:24 Apr 2024 20:33

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.