Dresia, Kai und Waxenegger-Wilfing, Günther und Riccius, Jörg und Deeken, Jan C. und Oschwald, Michael (2019) Numerically Efficient Fatigue Life Prediction of Rocket Combustion Chambers using Artificial Neural Networks. In: Proceedings of the 8th European Conference for Aeronautics and Space Sciences. 8th European Conference for Aeronautics and Space Sciences EUCASS, 2019-07-01 - 2019-07-04, Madrid, Spain. doi: 10.13009/EUCASS2019-264.
PDF
1MB |
Kurzfassung
Fatigue life prediction is an essential part of multidisciplinary design studies and optimization loops, but state of the art finite element based methods are numerically inefficient. We overcome this challenge by training an artificial neural network to predict the number of cycles to failure, based on combustion chamber geometry and operational point. To accomplish this, a 2-d finite element analysis generates 250 000 training data samples. The trained network then predicts previously unseen data with a mean absolute percentage error of 6:8 % in less than 0:1 ms per sample compared to up to 5 min with finite element based methods. To the best of our knowledge, this publication is the first to successfully apply machine learning to fatigue life prediction.
elib-URL des Eintrags: | https://elib.dlr.de/130206/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Numerically Efficient Fatigue Life Prediction of Rocket Combustion Chambers using Artificial Neural Networks | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||||||
Erschienen in: | Proceedings of the 8th European Conference for Aeronautics and Space Sciences | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.13009/EUCASS2019-264 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | machine learning, artificial neural network, liquid rocket engines, fatigue life prediction, surrogate models | ||||||||||||||||||||||||
Veranstaltungstitel: | 8th European Conference for Aeronautics and Space Sciences EUCASS | ||||||||||||||||||||||||
Veranstaltungsort: | Madrid, Spain | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 1 Juli 2019 | ||||||||||||||||||||||||
Veranstaltungsende: | 4 Juli 2019 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Raumtransport | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RP - Raumtransport | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt LUMEN (Liquid Upper Stage Demonstrator Engine) | ||||||||||||||||||||||||
Standort: | Lampoldshausen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Raumfahrtantriebe > Raketenantriebe | ||||||||||||||||||||||||
Hinterlegt von: | Hanke, Michaela | ||||||||||||||||||||||||
Hinterlegt am: | 18 Nov 2019 09:14 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:33 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags