elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning

Baumhoer, Celia und Dietz, Andreas und Kneisel, Christoph und Kuenzer, Claudia (2019) Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning. Remote Sensing, 11 (21), Seiten 1-22. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs11212529. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
4MB

Kurzfassung

Sea level rise contribution from the Antarctic ice sheet is influenced by changes in glacier and ice shelf front position. Still, little is known about seasonal glacier and ice shelf front fluctuations as the manual delineation of calving fronts from remote sensing imagery is very time-consuming. The major challenge of automatic calving front extraction is the low contrast between floating glacier and ice shelf fronts and the surrounding sea ice. Additionally, in previous decades, remote sensing imagery over the often cloud-covered Antarctic coastline was limited. Nowadays, an abundance of Sentinel-1 imagery over the Antarctic coastline exists and could be used for tracking glacier and ice shelf front movement. To exploit the available Sentinel-1 data, we developed a processing chain allowing automatic extraction of the Antarctic coastline from Seninel-1 imagery and the creation of dense time series to assess calving front change. The core of the proposed workflow is a modified version of the deep learning architecture U-Net. This convolutional neural network (CNN) performs a semantic segmentation on dual-pol Sentinel-1 data and the Antarctic TanDEM-X digital elevation model (DEM). The proposed method is tested for four training and test areas along the Antarctic coastline. The automatically extracted fronts deviate on average 78 m in training and 108 m test areas. Spatial and temporal transferability is demonstrated on an automatically extracted 15-month time series along the Getz Ice Shelf. Between May 2017 and July 2018, the fronts along the Getz Ice Shelf show mostly an advancing tendency with the fastest moving front of DeVicq Glacier with 726 ± 20 m/yr.

elib-URL des Eintrags:https://elib.dlr.de/129964/
Dokumentart:Zeitschriftenbeitrag
Titel:Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Baumhoer, CeliaCelia.Baumhoer (at) dlr.dehttps://orcid.org/0000-0003-1339-2288NICHT SPEZIFIZIERT
Dietz, AndreasAndreas.Dietz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kneisel, Christophkneisel (at) uni-wuerzburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kuenzer, Claudiaclaudia.kuenzer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:29 Oktober 2019
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.3390/rs11212529
Seitenbereich:Seiten 1-22
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:Antarctica; coastline; deep learning; semantic segmentation; Getz Ice Shelf; calving front; glacier front; U-Net; convolutional neural network; glacier terminus
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Baumhoer, Dr. Celia
Hinterlegt am:05 Nov 2019 12:09
Letzte Änderung:31 Okt 2023 13:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.