elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Heat Dependent Thermo-Viscous Shear-Thinning Fluid Flowing around a Double-Sphere Configuration within a Pipe

Rütten, Markus (2019) Heat Dependent Thermo-Viscous Shear-Thinning Fluid Flowing around a Double-Sphere Configuration within a Pipe. In: Proceedings of 8th GACM Colloquium on Computational Mechanics, 8. kassel university press. Proceedings of the 8th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry, August 28–30, 2019 in Kassel, Germany, 2019-08-28 - 2019-08-30, Kassel, Germany. ISBN 978-3-7376-5093-9.

[img] PDF - Nur DLR-intern zugänglich
16MB

Kurzfassung

Non-Newtonian fluid properties can change the flow behaviour and the resulting flow topology significantly, even for low Reynolds number laminar flows. The prediction of the flow field is even more difficult when thermal effects come into play. In particular when high shear rates occur and temperature is changing the fluid properties, unexpected flow phenomena can be observed. Focal point of this study is the laminar pipe flow of a thermo-viscous shear thinning Carreau fluid around double-sphere configurations. The two spheres are arranged in-line in pipe axial direction. In dependence of the distance between the spheres the flow topology around the sphere pair changes. The non-isothermal non-newtonian shear-thinnning fluid flows reveal temperature dependent deflections of the wake flow. Complicated flow separation and attachment structures between and behind the spheres occur. In the present CFD study sphere-wall temperature-dependent flow-structures are investigated. The temperature dependence of the fluid viscosity is modelled by applying the standard Williams-Landel-Ferry equation. It is shown that thermal-viscous shear thinning due to high shear rates and heat transfer from the sphere walls leads to a significant decrease of viscosity of three orders of magnitude in the near-field of the spheres. The locally reduced viscosity can be used to control the flow around the double sphere flow configuration. In the present simulation campaign thermal boundary conditions are varied over a wide range in order to derive relations between heat transfer, non-newtonian fluid properties and the behaviour of the double-sphere flow.

elib-URL des Eintrags:https://elib.dlr.de/129602/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Heat Dependent Thermo-Viscous Shear-Thinning Fluid Flowing around a Double-Sphere Configuration within a Pipe
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rütten, Markusmarkus.ruetten (at) dlr.dehttps://orcid.org/0000-0002-7991-5064NICHT SPEZIFIZIERT
Datum:29 August 2019
Erschienen in:Proceedings of 8th GACM Colloquium on Computational Mechanics
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:8
Verlag:kassel university press
ISBN:978-3-7376-5093-9
Status:veröffentlicht
Stichwörter:thermo-viscous shear thinning fluid flow double sphere configuration
Veranstaltungstitel:Proceedings of the 8th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry, August 28–30, 2019 in Kassel, Germany
Veranstaltungsort:Kassel, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:28 August 2019
Veranstaltungsende:30 August 2019
Veranstalter :University of Kassel
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Simulation und Validierung (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Hochgeschwindigkeitskonfigurationen, GO
Hinterlegt von: Rütten, Dr.-Ing. Markus
Hinterlegt am:17 Okt 2019 09:52
Letzte Änderung:24 Apr 2024 20:33

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.