Ferreira Torres, Vitor und Sill Torres, Frank (2019) Resilient training of neural network classifiers with approximate computing techniques for hardware-optimised implementations. IET Computers and Digital Techniques. Institution of Engineering and Technology (IET). doi: 10.1049/iet-cdt.2019.0036. ISSN 1751-8601.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://digital-library.theiet.org/content/journals/10.1049/iet-cdt.2019.0036
Kurzfassung
As Machine Learning applications increase the demand for optimised implementations in both embedded and high-end processing platforms, the industry and research community have been responding with different approaches to implement these solutions. This work presents approximations to arithmetic operations and mathematical functions that, associated with a customised adaptive artificial neural networks training method, based on RMSProp, provide reliable and efficient implementations of classifiers. The proposed solution does not rely on mixed operations with higher precision or complex rounding methods that are commonly applied. The intention of this work is not to find the optimal simplifications for specific deep learning problems but to present an optimised framework that can be used as reliably as one implemented with precise operations, standard training algorithms and the same network structures and hyper-parameters. By simplifying the 'half-precision' floating point format and approximating exponentiation and square root operations, the authors' work drastically reduces the field programmable gate array implementation complexity (e.g. -43 and -57% in two of the component resources). The reciprocal square root approximation is so simple it could be implemented only with combination logic. In a full software implementation for a mixed-precision platform, only two of the approximations compensate the processing overhead of precision conversions.
elib-URL des Eintrags: | https://elib.dlr.de/129585/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Resilient training of neural network classifiers with approximate computing techniques for hardware-optimised implementations | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | September 2019 | ||||||||||||
Erschienen in: | IET Computers and Digital Techniques | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1049/iet-cdt.2019.0036 | ||||||||||||
Verlag: | Institution of Engineering and Technology (IET) | ||||||||||||
ISSN: | 1751-8601 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Machine Learning, Approximations | ||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||
Standort: | Bremerhaven | ||||||||||||
Institute & Einrichtungen: | Institut für den Schutz maritimer Infrastrukturen > Resilienz Maritimer Systeme | ||||||||||||
Hinterlegt von: | Sill Torres, Dr. Frank | ||||||||||||
Hinterlegt am: | 28 Okt 2019 13:19 | ||||||||||||
Letzte Änderung: | 19 Nov 2021 20:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags