elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Strategies for Multi-Fidelity Optimization of Multi-Stage Compressors with Throughflow and 3D CFD

Schnoes, Markus und Schmitz, Andreas und Goinis, Georgios und Voß, Christian und Nicke, Eberhard (2019) Strategies for Multi-Fidelity Optimization of Multi-Stage Compressors with Throughflow and 3D CFD. ISABE 2019, 2019-09-23 - 2019-09-27, Canberra, Australia.

[img] PDF
997kB

Kurzfassung

The aerodynamic design of turbomachinery is an exciting engineering problem that involves a vast design space and requires proficiency in multiple engineering disciplines. For multi-stage compressors, the large dimension of the design space arises from the geometric freedom to shape each blade row individually. Although the basis of most designs is formed by throughflow computations, the state-of-the art for aerodynamic evaluation is steady-state RANS. The computational expense for a single evaluation of a multi-stage machine with RANS is affordable, shape optimizations with hundreds of evaluations becomes expensive. This paper presents two strategies to tackle these problems: Firstly, a novel airfoil family is employed that helps to reduce the number of design parameters. It was generated based on a parametric study of optimal airfoil shape for varying design requirements. Secondly, an optimizer is used that supports simultaneous evaluations of the objective function on multiple fidelity levels. Here, cheap throughflow calculations are conducted on the low-fidelity side and RANS is used on the high-fidelity side. Inside the optimizer, multi-fidelity support is enabled by a Co-Kriging surrogate model. This approach is expected to speed-up the optimization by guiding expensive evaluations of the 3D CFD setup into promising regions of the design space. These strategies are assessed by testing different optimization setups for a four stage compressor. Both purely low and high-fidelity optimizations are conducted as well as multi-fidelity optimizations. In comparison to the baseline design, the isentropic efficiency predicted by RANS for the working line points on the 95% and the 100% speed line is increased by above 1.2%. The driving mechanism is a load redistribution between the stages that mainly reduces the shock strength of the second rotor.

elib-URL des Eintrags:https://elib.dlr.de/129457/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Strategies for Multi-Fidelity Optimization of Multi-Stage Compressors with Throughflow and 3D CFD
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schnoes, Markusmarkus.schnoes (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schmitz, AndreasAndreas.Schmitz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Goinis, GeorgiosGeorgios.Goinis (at) dlr.dehttps://orcid.org/0000-0002-1455-7673NICHT SPEZIFIZIERT
Voß, ChristianChristian.Voss (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Nicke, EberhardEberhard.Nicke (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2019
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Design Optimization, Throughflow, 3D CFD, Compressor, Co-Kriging, Multi-Fidelity
Veranstaltungstitel:ISABE 2019
Veranstaltungsort:Canberra, Australia
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:23 September 2019
Veranstaltungsende:27 September 2019
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Antriebssysteme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L ER - Engine Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Verdichtertechnologien (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik > Fan- und Verdichter
Hinterlegt von: Schnös, Markus
Hinterlegt am:18 Nov 2019 12:12
Letzte Änderung:24 Apr 2024 20:32

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.