elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Modelling forecast errors for day-ahead electricity market prices

Schimeczek, Christoph und Nitsch, Felix (2019) Modelling forecast errors for day-ahead electricity market prices. 8th INREC 2019 - Uncertainties in Energy Markets, 2019-09-25 - 2019-09-26, Essen, Deutschland.

[img] PDF
4MB

Kurzfassung

How profitable can flexibility providers, e.g. storage plants, operate in the future electricity system? To answer this question it is crucial to understand future electricity market prices. Profit potentials of flexibility providers may, on the other hand, also depend on the short-term forecasting quality of electricity prices. It is therefore important to include electricity price forecasting errors when modelling profit estimates for flexibility options. However, creating artificial errors is not an easy task, since those do not match common distributions, e.g. Gaussian distributions. We aim to fill this gap and thereby provide an approach to generate sophisticated artificial price forecast errors. We present a statistical analysis performed on several years of forecasting data for the German day-ahead wholesale electricity market. Based on this analysis we derive a model to explain the major impacts on the price forecast quality. We extract a statistical distribution of forecast quality changes and finally provide a method to create artificial forecasting errors that can be applied on top of perfect foresight prices. Such can often be found in optimisation models [1], [2] or even simulation models [3] of energy systems. Thus, prices from such models can be enhanced to resemble typical uncertainties with respect to short-term forecasts. The employed price uncertainty model considers the shape of the merit-order curve, a 24 hour cycle for the estimate of residual load and an auto-correlation. We show that the forecasting uncertainty can be explained satisfactorily using these three components. Following a histogram analysis, an exponential distribution for the change of forecasting errors is derived. In order to construct artificial errors, random values are drawn from this distribution and correlated following an observed autocorrelation function. The artificial forecasting errors can be scaled to represent any degree of uncertainty for the actor under investigation. Figure 1 shows an example of such artificially generated forecasting errors. Although the line plot of the artificial and actual errors do not overlap precisely the degree of uncertainty, depending on the depicted hour, is similar in both graphs. Furthermore, their qualitative characteristics match. Descriptive statistics in Table 1 show a very high agreement for different measures of artificial and actual errors. The values for the artificial errors were not perfectly stable although several thousand data points of artificial errors were created. This is expected since artificial errors are created based on random numbers. Therefore, connected values in Table 1 are shown with reduced precision. [1] Y. Scholz, Renewable Energy Based Electricity Supply at Low Costs: Development of the REMix Model and Application for Europe, Universität Stuttgart, 2012. [2] N. Sun, Modellgestützte Untersuchung des Elektrizitätsmarktes: Kraftwerkseinsatzplanung und -Investitionen, Universität Stuttgart, 2013. [3] M. Deissenroth, M. Klein, K. Nienhaus, and M. Reeg, Assessing the Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy Market Integration, Complexity, vol. 2017, pp. 1-24, 2017.

elib-URL des Eintrags:https://elib.dlr.de/129448/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Modelling forecast errors for day-ahead electricity market prices
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schimeczek, ChristophChristoph.Schimeczek (at) dlr.dehttps://orcid.org/0000-0002-0791-9365NICHT SPEZIFIZIERT
Nitsch, Felixfelix.nitsch (at) dlr.dehttps://orcid.org/0000-0002-9824-3371NICHT SPEZIFIZIERT
Datum:25 September 2019
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:electricity price modelling forecast error energy system modelling
Veranstaltungstitel:8th INREC 2019 - Uncertainties in Energy Markets
Veranstaltungsort:Essen, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:25 September 2019
Veranstaltungsende:26 September 2019
Veranstalter :University of Duisburg-Essen
HGF - Forschungsbereich:Energie
HGF - Programm:TIG Technologie, Innovation und Gesellschaft
HGF - Programmthema:Erneuerbare Energie- und Materialressourcen für eine nachhaltige Zukunft
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SY - Energiesystemanalyse
DLR - Teilgebiet (Projekt, Vorhaben):E - Systemanalyse und Technikbewertung (alt)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik > Energiesystemanalyse
Hinterlegt von: Nitsch, Felix
Hinterlegt am:11 Okt 2019 14:20
Letzte Änderung:24 Apr 2024 20:32

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.