elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Wet and Dry Snow Detection Using Sentinel-1 SAR Data for Mountainous Areas with a Machine Learning Technique

Tsai, Ya-Lun und Dietz, Andreas und Oppelt, Natascha und Künzer, Claudia (2019) Wet and Dry Snow Detection Using Sentinel-1 SAR Data for Mountainous Areas with a Machine Learning Technique. Remote Sensing, 11 (8), Seiten 1-29. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs11080895. ISSN 2072-4292.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
9MB

Offizielle URL: https://www.mdpi.com/2072-4292/11/8/895

Kurzfassung

Traditional studies on mapping wet snow cover extent (SCE) often feature limitations, especially in vegetated and mountainous areas. The aim of this study is to propose a new total and wet SCE mapping strategy based on freely accessible spaceborne synthetic aperture radar (SAR) data. The approach is transferable on a global scale as well as for different land cover types (including densely vegetated forest and agricultural regions), and is based on the use of backscattering coefficient, interferometric SAR coherence, and polarimetric parameters. Furthermore, four topographical factors were included in the simple tuning of random forest-based land cover type-dependent classification strategy. Results showed the classification accuracy was above 0.75, with an F-measure higher than 0.70, in all five selected regions of interest located around globally distributed mountain ranges. Whilst excluding forest-type land cover classes, the accuracy and F-measure increases to 0.80 and 0.75. In cross-location model set, the accuracy can also be maintained at 0.80 with non-forest accuracy up to 0.85. It has been found that the elevation and polarimetric parameters are the most critical factors, and that the quality of land cover information would also affect the subsequent mapping reliability. In conclusion, through comprehensive validation using optical satellite and in-situ data, our land cover-dependent total SCE mapping approach has been confirmed to be robustly applicable, and the holistic SCE map for different months were eventually derived.

elib-URL des Eintrags:https://elib.dlr.de/129204/
Dokumentart:Zeitschriftenbeitrag
Titel:Wet and Dry Snow Detection Using Sentinel-1 SAR Data for Mountainous Areas with a Machine Learning Technique
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tsai, Ya-LunYa-Lun.Tsai (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dietz, AndreasAndreas.Dietz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Oppelt, NataschaLMU MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Künzer, Claudiaclaudia.kuenzer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2019
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.3390/rs11080895
Seitenbereich:Seiten 1-29
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:synthetic aperture radar; InSAR; PolSAR; backscattering; random forest; snow cover area; land use land cover; Sentinel-2; Landsat
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Dietz, Andreas
Hinterlegt am:18 Sep 2019 10:03
Letzte Änderung:30 Jan 2024 13:09

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.