elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Combination of PROBA-V/MODIS-Based Products with Sentinel-1 SAR Data for Detecting Wet and Dry Snow Cover in Mountainous Areas

Tsai, Ya-Lun und Dietz, Andreas und Oppelt, Natascha und Künzer, Claudia (2019) A Combination of PROBA-V/MODIS-Based Products with Sentinel-1 SAR Data for Detecting Wet and Dry Snow Cover in Mountainous Areas. Remote Sensing, 11 (16), Seiten 1-20. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs11161904. ISSN 2072-4292.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
9MB

Offizielle URL: https://www.mdpi.com/2072-4292/11/16/1904

Kurzfassung

In the present study, we explore the value of employing both vegetation indexes as well as land surface temperature derived from Project for On-Board Autonomy—Vegetation (PROBA-V) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, respectively, to support the detection of total (wet + dry) snow cover extent (SCE) based on a simple tuning machine learning approach and provide reliability maps for further analysis. We utilize Sentinel-1-based synthetic aperture radar (SAR) observations, including backscatter coefficient, interferometric coherence, and polarimetric parameters, and four topographical factors as well as vegetation and temperature information to detect the total SCE with a land cover-dependent random forest-based approach. Our results show that the overall accuracy and F-measure are over 90% with an ’Area Under the receiver operating characteristic Curve (ROC)’ (AUC) score of approximately 80% over five study areas located in different mountain ranges, continents, and hemispheres. These accuracies are also confirmed by a comprehensive validation approach with different data sources, attesting the robustness and global transferability. Additionally, based on the reliability maps, we find an inversely proportional relationship between classification reliability and vegetation density. In conclusion, comparing to a previous study only utilizing SAR-based observations, the method proposed in the present study provides a complementary approach to achieve a higher total SCE mapping accuracy while maintaining global applicability with reliable accuracy and corresponding uncertainty Information.

elib-URL des Eintrags:https://elib.dlr.de/129203/
Dokumentart:Zeitschriftenbeitrag
Titel:A Combination of PROBA-V/MODIS-Based Products with Sentinel-1 SAR Data for Detecting Wet and Dry Snow Cover in Mountainous Areas
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tsai, Ya-LunYa-Lun.Tsai (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dietz, AndreasAndreas.Dietz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Oppelt, NataschaLMU MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Künzer, Claudiaclaudia.kuenzer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2019
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.3390/rs11161904
Seitenbereich:Seiten 1-20
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:Synthetic aperture radar; InSAR; PolSAR; backscatter; machine learning; snow cover area; land use land cover; Sentinel-2; Landsat
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Dynamik der Landoberfläche
Hinterlegt von: Dietz, Andreas
Hinterlegt am:18 Sep 2019 10:02
Letzte Änderung:03 Nov 2023 10:04

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.