Fuentes Reyes, Mario und Auer, Stefan und Merkle, Nina Marie und Henry, Corentin und Schmitt, Michael (2019) SAR-to-Optical Image Translation Based on Conditional Generative Adversarial Networks - Optimization, Opportunities and Limits. Remote Sensing, 11 (17), Seiten 1-19. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs11172067. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
14MB |
Offizielle URL: https://www.mdpi.com/2072-4292/11/17/2067
Kurzfassung
Due to its all time capability, synthetic aperture radar (SAR) remote sensing plays an important role in Earth observation. The ability to interpret the data is limited, even for experts, as the human eye is not familiar to the impact of distance-dependent imaging, signal intensities detected in the radar spectrum as well as image characteristics related to speckle or steps of post-processing. This paper is concerned with machine learning for SAR-to-optical image-to-image translation in order to support the interpretation and analysis of original data. A conditional adversarial network is adopted and optimized in order to generate alternative SAR image representations based on the combination of SAR images (starting point) and optical images (reference) for training. Following this strategy, the focus is set on the value of empirical knowledge for initialization, the impact of results on follow-up applications, and the discussion of opportunities/drawbacks related to this application of deep learning. Case study results are shown for high resolution (SAR: TerraSAR-X, optical: ALOS PRISM) and low resolution (Sentinel-1 and -2) data. The properties of the alternative image representation are evaluated based on feedback from experts in SAR remote sensing and the impact on road extraction as an example for follow-up applications. The results provide the basis to explain fundamental limitations affecting the SAR-to-optical image translation idea but also indicate benefits from alternative SAR image representations.
elib-URL des Eintrags: | https://elib.dlr.de/129009/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | SAR-to-Optical Image Translation Based on Conditional Generative Adversarial Networks - Optimization, Opportunities and Limits | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 3 September 2019 | ||||||||||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 11 | ||||||||||||||||||||||||
DOI: | 10.3390/rs11172067 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-19 | ||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
Name der Reihe: | Advances in Remote Sensing Image Fusion | ||||||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Synthetic Aperture Radar (SAR); deep learning; interpretation; generative adversarial networks | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | Fuentes Reyes, Mario | ||||||||||||||||||||||||
Hinterlegt am: | 05 Sep 2019 13:18 | ||||||||||||||||||||||||
Letzte Änderung: | 31 Okt 2023 13:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags