elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

SAR-to-Optical Image Translation Based on Conditional Generative Adversarial Networks - Optimization, Opportunities and Limits

Fuentes Reyes, Mario und Auer, Stefan und Merkle, Nina Marie und Henry, Corentin und Schmitt, Michael (2019) SAR-to-Optical Image Translation Based on Conditional Generative Adversarial Networks - Optimization, Opportunities and Limits. Remote Sensing, 11 (17), Seiten 1-19. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs11172067. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
14MB

Offizielle URL: https://www.mdpi.com/2072-4292/11/17/2067

Kurzfassung

Due to its all time capability, synthetic aperture radar (SAR) remote sensing plays an important role in Earth observation. The ability to interpret the data is limited, even for experts, as the human eye is not familiar to the impact of distance-dependent imaging, signal intensities detected in the radar spectrum as well as image characteristics related to speckle or steps of post-processing. This paper is concerned with machine learning for SAR-to-optical image-to-image translation in order to support the interpretation and analysis of original data. A conditional adversarial network is adopted and optimized in order to generate alternative SAR image representations based on the combination of SAR images (starting point) and optical images (reference) for training. Following this strategy, the focus is set on the value of empirical knowledge for initialization, the impact of results on follow-up applications, and the discussion of opportunities/drawbacks related to this application of deep learning. Case study results are shown for high resolution (SAR: TerraSAR-X, optical: ALOS PRISM) and low resolution (Sentinel-1 and -2) data. The properties of the alternative image representation are evaluated based on feedback from experts in SAR remote sensing and the impact on road extraction as an example for follow-up applications. The results provide the basis to explain fundamental limitations affecting the SAR-to-optical image translation idea but also indicate benefits from alternative SAR image representations.

elib-URL des Eintrags:https://elib.dlr.de/129009/
Dokumentart:Zeitschriftenbeitrag
Titel:SAR-to-Optical Image Translation Based on Conditional Generative Adversarial Networks - Optimization, Opportunities and Limits
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fuentes Reyes, MarioMario.FuentesReyes (at) dlr.dehttps://orcid.org/0000-0002-6593-5152NICHT SPEZIFIZIERT
Auer, StefanStefan.Auer (at) dlr.dehttps://orcid.org/0000-0001-9310-2337NICHT SPEZIFIZIERT
Merkle, Nina MarieNina.Merkle (at) dlr.dehttps://orcid.org/0000-0003-4177-1066NICHT SPEZIFIZIERT
Henry, CorentinCorentin.henry (at) dlr.dehttps://orcid.org/0000-0002-4330-3058NICHT SPEZIFIZIERT
Schmitt, Michaelm.schmitt (at) tum.dehttps://orcid.org/0000-0002-0575-2362NICHT SPEZIFIZIERT
Datum:3 September 2019
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.3390/rs11172067
Seitenbereich:Seiten 1-19
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
Name der Reihe:Advances in Remote Sensing Image Fusion
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:Synthetic Aperture Radar (SAR); deep learning; interpretation; generative adversarial networks
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Fuentes Reyes, Mario
Hinterlegt am:05 Sep 2019 13:18
Letzte Änderung:31 Okt 2023 13:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.