elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Multiple vehicle and people tracking in aerial imagery using stack of micro single-object-tracking CNNs

Bahmanyar, Reza und Azimi, Seyedmajid und Reinartz, Peter (2019) Multiple vehicle and people tracking in aerial imagery using stack of micro single-object-tracking CNNs. ISPRS. ISPRS International GeoSpatial Conference, 2019-10-12 - 2019-10-14, Tehran, Iran.

[img] PDF
11MB

Offizielle URL: https://geospatialconf2019.ut.ac.ir/

Kurzfassung

Geo-referenced real-time vehicle and person tracking in aerial imagery has a variety of applications such as traffic and large-scale event monitoring, disaster management, and also for input into predictive traffic and crowd models. However, object tracking in aerial imagery is still an unsolved challenging problem due to the tiny size of the objects as well as different scales and the limited temporal resolution of geo-referenced datasets. In this work, we propose a new approach based on Convolutional Neural Networks (CNNs) to track multiple vehicles and people in aerial image sequences. As the large number of objects in aerial images can exponentially increase the processing demands in multiple object tracking scenarios, the proposed approach utilizes the stack of micro CNNs, where each micro CNN is responsible for a single-object tracking task. We call our approach Stack of Micro-Single-Object-Tracking CNNs (SMSOT-CNN). More precisely, using a two-stream CNN, we extract a set of features from two consecutive frames for each object, with the given location of the object in the previous frame. Then, we assign each MSOT-CNN the extracted features of each object to predict the object location in the current frame. We train and validate the proposed approach on the vehicle and person sets of the KIT AIS dataset of object tracking in aerial image sequences. Results indicate the accurate and time-efficient tracking of multiple vehicles and people by the proposed approach.

elib-URL des Eintrags:https://elib.dlr.de/128900/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Multiple vehicle and people tracking in aerial imagery using stack of micro single-object-tracking CNNs
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bahmanyar, Rezareza.bahmanyar (at) dlr.dehttps://orcid.org/0000-0002-6999-714XNICHT SPEZIFIZIERT
Azimi, SeyedmajidSeyedmajid.Azimi (at) dlr.dehttps://orcid.org/0000-0002-6084-2272NICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:2019
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seiten 1-8
Verlag:ISPRS
Status:veröffentlicht
Stichwörter:Aerial Imagery, Vehicle Tracking, Person Tracking, CNNs, Disaster Management, Traffic Management
Veranstaltungstitel:ISPRS International GeoSpatial Conference
Veranstaltungsort:Tehran, Iran
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:12 Oktober 2019
Veranstaltungsende:14 Oktober 2019
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - NGC KoFiF (alt), V - D.MoVe (alt), V - UrMo Digital (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Bahmanyar, Gholamreza
Hinterlegt am:29 Aug 2019 11:08
Letzte Änderung:24 Apr 2024 20:32

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.