elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

MRCNet: Crowd counting and density map estimation in aerial and ground imagery

Bahmanyar, Reza und Vig, Eleonora und Reinartz, Peter (2019) MRCNet: Crowd counting and density map estimation in aerial and ground imagery. In: BMVC’s Workshop on Object Detection and Recognition for Security Screenin (BMVC-ODRSS), Seiten 1-12. BMVC Workshop on Object Detection and Recognition for Security Screening, 2019-09-09 - 2019-09-12, Cardiff, United Kingdom.

[img] PDF
2MB

Offizielle URL: https://bmvc2019.org/workshops/

Kurzfassung

In spite of the many advantages of aerial imagery for crowd monitoring and management at mass events, datasets of aerial images of crowds are still lacking in the field. As a remedy, in this work we introduce a novel crowd dataset, the DLR Aerial Crowd Dataset (DLR-ACD), which is composed of 33 large aerial images acquired from 16 flight campaigns over mass events with 226,291 persons annotated. To the best of our knowledge, DLR-ACD is the first aerial crowd dataset and will be released publicly. To tackle the problem of accurate crowd counting and density map estimation in aerial images of crowds, this work also proposes a new encoder-decoder convolutional neural network, the so-called Multi-Resolution Crowd Network (MRCNet). The encoder is based on the VGG-16 network and the decoder is composed of a set of bilinear upsampling and convolutional layers. Using two losses, one at an earlier level and another at the last level of the decoder, MRCNet estimates crowd counts and high-resolution crowd density maps as two different but interrelated tasks. In addition, MRCNet utilizes contextual and detailed local information by combining high- and low-level features through a number of lateral connections inspired by the Feature Pyramid Network (FPN) technique. We evaluated MRCNet on the proposed DLR-ACD dataset as well as on the ShanghaiTech dataset, a CCTV-based crowd counting benchmark. The results demonstrate that MRCNet outperforms the state-of-the-art crowd counting methods in estimating the crowd counts and density maps for both aerial and CCTV-based Images.

elib-URL des Eintrags:https://elib.dlr.de/128895/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:MRCNet: Crowd counting and density map estimation in aerial and ground imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bahmanyar, Rezareza.bahmanyar (at) dlr.dehttps://orcid.org/0000-0002-6999-714XNICHT SPEZIFIZIERT
Vig, EleonoraEleonora.Vig (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:September 2019
Erschienen in:BMVC’s Workshop on Object Detection and Recognition for Security Screenin (BMVC-ODRSS)
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seiten 1-12
Status:veröffentlicht
Stichwörter:Aerial Imagery, Crowd Counting, Crowd Density Map Estimation, Convolutional Neural Networks, Disaster Management, Security Systems
Veranstaltungstitel:BMVC Workshop on Object Detection and Recognition for Security Screening
Veranstaltungsort:Cardiff, United Kingdom
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:9 September 2019
Veranstaltungsende:12 September 2019
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - NGC KoFiF (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Bahmanyar, Gholamreza
Hinterlegt am:29 Aug 2019 10:58
Letzte Änderung:24 Apr 2024 20:32

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.