Briese, Christoph und Günther, Lukas (2019) Deep Learning with Semi-Synthetic Training Images for Detection of Non-Cooperative UAVs. In: 2019 International Conference on Unmanned Aircraft Systems, ICUAS 2019. The 2019 International Conference on Unmanned Aircraft Systems, 2019-06-11 - 2019-06-14, Atlanta, GA, USA. doi: 10.1109/ICUAS.2019.8797731.
PDF
2MB |
Kurzfassung
This paper presents a method to generate a dataset for training a deep convolutional network to detect a non cooperative unmanned aerial vehicle in video data. Deep convolutional network have shown a great potential for tasks like object detection and have been continuously improved in the last years. Still, the amount of training data is large and their generation can be complex and time consuming, especially if the appearance of the detected object is not clearly specified. The concept presented here is to train a deep convolutional neural network just with a few two dimensional images of unmanned aerial vehicle to simplify the process of generating training data. Performance of the trained network is evaluated with data from real experimental flights and compared with hand-labeled ground truth data to validate the correctness. To cover situations when the classifier fails at the detection, the output is integrated in a image processing pipeline for object tracking in order to establish a continuous tracking.
elib-URL des Eintrags: | https://elib.dlr.de/128731/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Deep Learning with Semi-Synthetic Training Images for Detection of Non-Cooperative UAVs | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 17 Juni 2019 | ||||||||||||
Erschienen in: | 2019 International Conference on Unmanned Aircraft Systems, ICUAS 2019 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/ICUAS.2019.8797731 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Unmanned Aircraft, Sense and Avoid, Machine Learning, Deep Convolutional Network | ||||||||||||
Veranstaltungstitel: | The 2019 International Conference on Unmanned Aircraft Systems | ||||||||||||
Veranstaltungsort: | Atlanta, GA, USA | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 11 Juni 2019 | ||||||||||||
Veranstaltungsende: | 14 Juni 2019 | ||||||||||||
Veranstalter : | IEEE/ICUAS Association | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
DLR - Forschungsgebiet: | L - keine Zuordnung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - keine Zuordnung | ||||||||||||
Standort: | Braunschweig | ||||||||||||
Institute & Einrichtungen: | Institut für Flugsystemtechnik | ||||||||||||
Hinterlegt von: | Briese, Christoph | ||||||||||||
Hinterlegt am: | 10 Jan 2020 19:04 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:32 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags