elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Modelling Complex Investment Decisions for Renewables with Machine Learning

Frey, Ulrich und Klein, Martin (2018) Modelling Complex Investment Decisions for Renewables with Machine Learning. European Social Simulation Conference, 2018-08-20 - 2018-08-24, Stockholm.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

The factors that drive the decision-making process behind private investments in renewables, e.g. solar on roof tops are still somewhat unknown. We aim to develop a more comprehensive model with potential factors from various backgrounds including social, economic and geographic drivers. We use an existing data set of real investments in PV in Germany from 1991 to 2014. These 1.4 million investment decisions are merged with other data sets with information on social, employment, rural/urban characteristics, election results and other potential drivers. The variable of interest is the installed capacity per county. Since the interactions between these variables may be complex, non-linear and are basically not known, we decided to use machine learning statistical methods. In order to increase the robustness of results and to find out which algorithm performs best in terms of model quality, we used Generalized Linear Models (GLM), random forests, gradient boosting and deep neural networks. Model predictions are rather accurate: at the county level the adjusted R2 is 0.65 for GLM, 0.66 for Random Forests, 0.68 for deep neural nets and 0.68 for gradient boosting. Agreement between methods is only decent with deep neural nets calculating a much more balanced model in contrast to gradient boosting. Concerning factor importance for investment decisions, the best two models confirm that the amount of solar insolation received, the absolute number of population per county, and the density and the distinction between urban and rural areas are most relevant

elib-URL des Eintrags:https://elib.dlr.de/128578/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Modelling Complex Investment Decisions for Renewables with Machine Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Frey, UlrichUlrich.Frey (at) dlr.dehttps://orcid.org/0000-0002-9803-1336NICHT SPEZIFIZIERT
Klein, MartinM.Klein (at) dlr.dehttps://orcid.org/0000-0001-7283-4707NICHT SPEZIFIZIERT
Datum:2018
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:investment decision; solar installation; machine learning
Veranstaltungstitel:European Social Simulation Conference
Veranstaltungsort:Stockholm
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:20 August 2018
Veranstaltungsende:24 August 2018
HGF - Forschungsbereich:Energie
HGF - Programm:TIG Technologie, Innovation und Gesellschaft
HGF - Programmthema:Erneuerbare Energie- und Materialressourcen für eine nachhaltige Zukunft
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SY - Energiesystemanalyse
DLR - Teilgebiet (Projekt, Vorhaben):E - Systemanalyse und Technikbewertung (alt)
Standort: Stuttgart
Institute & Einrichtungen:Institut für Technische Thermodynamik > Energiesystemanalyse
Hinterlegt von: Frey, Ulrich
Hinterlegt am:22 Aug 2019 16:03
Letzte Änderung:24 Apr 2024 20:32

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.