elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Application of the modal approach for prediction of forced response amplitudes for fan blades

Eichner, Franziska und Belz, Joachim (2019) Application of the modal approach for prediction of forced response amplitudes for fan blades. Journal of Engineering for Gas Turbines and Power, 141 (3), 031019-1. American Society of Mechanical Engineers (ASME). doi: 10.1115/1.4041453. ISSN 0742-4795.

Dies ist die aktuellste Version dieses Eintrags.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=2702906&resultClick=1

Kurzfassung

Forced response is the main reason for high cycle fatigue in turbomachinery. Not all resonance points in the operating range can be avoided especially for low order excitation. For highly flexible carbon fiber reinforced polymer (CFRP) fans, an accurate calculation of vibration amplitudes is required. Forced response analyses were performed for blade row interaction and boundary layer ingestion (BLI). The resonance points considered were identified in the Campbell diagram. Forced response amplitudes were calculated using a modal approach and the results are compared to the widely used energy method. For the unsteady simulations, a time-based linearization of the unsteady Reynolds average Navier–Stokes equations were applied. If only the resonant mode was considered, the forced response amplitude from the modal approach was confirmed with the energy method. Thereby, forced response due to BLI showed higher vibration amplitudes than for blade row interaction. The impact of modes which are not in resonant to the total deformation were investigated by using the modal approach, which so far only considers one excitation order. A doubling of vibrational amplitude was shown in the case of blade row interaction for higher rotational speeds. The first and third modeshapes as well as modes with similar natural frequencies were identified as critical cases. The behavior in the vicinity of resonance shows high vibration amplitudes over a larger frequency range. This is also valid for high modes with many nodal diameters, which have a greater risk of critical strain.

elib-URL des Eintrags:https://elib.dlr.de/128146/
Dokumentart:Zeitschriftenbeitrag
Titel:Application of the modal approach for prediction of forced response amplitudes for fan blades
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Eichner, FranziskaFranziska.Eichner (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Belz, JoachimJoachim.Belz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:März 2019
Erschienen in:Journal of Engineering for Gas Turbines and Power
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:141
DOI:10.1115/1.4041453
Seitenbereich:031019-1
Verlag:American Society of Mechanical Engineers (ASME)
ISSN:0742-4795
Status:veröffentlicht
Stichwörter:counter rotating fan, forced Response, frequency response function, carbon fiber reinforced polymer (CFRP), boundary layer ingestion (BLI)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Antriebssysteme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L ER - Engine Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Verdichtertechnologien (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aeroelastik > Aeroelastische Experimente
Hinterlegt von: Belz, Joachim
Hinterlegt am:12 Jul 2019 15:16
Letzte Änderung:31 Okt 2023 14:59

Verfügbare Versionen dieses Eintrags

  • Application of the modal approach for prediction of forced response amplitudes for fan blades. (deposited 12 Jul 2019 15:16) [Gegenwärtig angezeigt]

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.