elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

2D/3D information fusion for building extraction from high-resolution satellite stereo images using kernel graph cuts

Mohammadi, Hamid und Samadzadegan, Farhad und Reinartz, Peter (2019) 2D/3D information fusion for building extraction from high-resolution satellite stereo images using kernel graph cuts. International Journal of Remote Sensing, 40 (15), Seiten 5835-5860. Taylor & Francis. doi: 10.1080/01431161.2019.1584417. ISSN 0143-1161.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.tandfonline.com/toc/tres20/current

Kurzfassung

This study presents a building extraction strategy from high resolution satellite stereo images (HRSSI) using 2D and 3D information fusion. In the 2D processing strategy, a visible Vegetation index (VVI) is generated. In the 3D processing, a disparity map is generated using semi-global matching (SGM). To remove defects from the disparity map, an object-based approach is proposed by using mean-shift image segmentation and extracting rectangles. By removing terrain effects, a normalized disparity map (nDM) is produced. In the next step, vegetation pixels are removed from nDM and an initial building mask is generated. As nDM does not have precise building boundaries, hybrid segmentation by the kernel graph cut (KGC) is applied to the feature space including the RGB, nDM, and VVI and the results are used in a decision Level fusion step. By this methodology, segments that are highly intersected with initial building mask are classified as buildings. Finally, a building boundary refinement (BBR) algorithm is applied to buildings for removing the remaining defects. The proposed method is applied to two pairs of GeoEye-1 stereo images including residential and industrial test areas. Evaluation results show the completeness and correctness level of higher than 90% for the two test areas. Further evaluations show that the quality metric has significantly changed after decision level fusion using the KGC.

elib-URL des Eintrags:https://elib.dlr.de/127924/
Dokumentart:Zeitschriftenbeitrag
Titel:2D/3D information fusion for building extraction from high-resolution satellite stereo images using kernel graph cuts
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Mohammadi, HamidUniversity of TehranNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Samadzadegan, FarhadUniversity of Tehran, Tehran, IranNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:März 2019
Erschienen in:International Journal of Remote Sensing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:40
DOI:10.1080/01431161.2019.1584417
Seitenbereich:Seiten 5835-5860
Verlag:Taylor & Francis
ISSN:0143-1161
Status:veröffentlicht
Stichwörter:building extraction, high-Resolution satellite Stereo Image, graph cuts
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - D.MoVe (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Knickl, Sabine
Hinterlegt am:04 Jul 2019 10:40
Letzte Änderung:23 Sep 2019 11:32

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.