Liuzzi, Mariangela und Aravena Pelizari, Patrick und Geiß, Christian und Masi, Angelo und Tramutoli, Valerio und Taubenböck, Hannes (2019) A transferable remote sensing approach to classify building structural types for seismic risk analyses: the case of Val d’Agri area (Italy). Bulletin of Earthquake Engineering, Seiten 1-29. Springer. doi: 10.1007/s10518-019-00648-7. ISSN 1570-761X.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://link.springer.com/article/10.1007/s10518-019-00648-7
Kurzfassung
This study proposes a methodology based on machine learning (ML) algorithms for rapid and robust classification of building structural types (STs) in multispectral remote sensing imagery aiming to assess buildings’ seismic vulnerability. The seismic behavior of buildings is strongly affected by the ST, including material, age, height, and other main structural features. Previous works deployed in situ data integrated with remote sensing information to statistically infer STs through supervised ML methods. We propose a transferable methodology with specific focus on situations with imbalanced in situ data (i.e., the number of available labeled samples for model learning differs largely between different STs). We learn a transferable model by selecting features from an exhaustive set. The transferability relies on deploying geometric features characterizing individual buildings; thus, the model is less sensitive to domain adaption problems frequently induced by e.g., changes in acquisition parameters of remotely sensed imagery. Thereby, we show that few geometry features enable generalization capabilities similar to models learned with a large number of features describing spectral, geometrical or contextual building properties. We rely on an extensive geodatabase containing almost 18,000 building footprints. We follow a Random Forest (RF)-based feature selection strategy to objectively identify most valuable features for prediction. Furthermore, the problem of unbalanced classes is addressed by adopting two approaches: downsampling the majority class and modifying the classifier internally (weighted RF). The implemented model is transferred on the challenging urban morphology of the Val d’Agri area (Italy). Results confirm the statistical robustness of the model and the importance of the geometry features, allowing for reliable identification of STs.
elib-URL des Eintrags: | https://elib.dlr.de/127901/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | A transferable remote sensing approach to classify building structural types for seismic risk analyses: the case of Val d’Agri area (Italy) | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 15 Juni 2019 | ||||||||||||||||||||||||||||
Erschienen in: | Bulletin of Earthquake Engineering | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
DOI: | 10.1007/s10518-019-00648-7 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-29 | ||||||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||||||
ISSN: | 1570-761X | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | machine learning, remote sensing, seismic vulnerability, building structural type, building inventory, class imbalance | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, R - Sicherheitsrelevante Erdbeobachtung | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||||||||||
Hinterlegt von: | Aravena Pelizari, Patrick | ||||||||||||||||||||||||||||
Hinterlegt am: | 05 Aug 2019 10:16 | ||||||||||||||||||||||||||||
Letzte Änderung: | 28 Mär 2023 23:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags