Bittner, Ksenia und Körner, Marco und Fraundorfer, Friedrich und Reinartz, Peter (2019) Multi-Task cGAN for Simultaneous Spaceborne DSM Refinement and Roof-Type Classification. Remote Sensing, 11 (11), Seiten 1262-1284. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs11111262. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
7MB |
Offizielle URL: https://www.mdpi.com/2072-4292/11/11/1262
Kurzfassung
Various deep learning applications benefit from multi-task learning with multiple regression and classification objectives by taking advantage of the similarities between individual tasks. This can result in improved learning efficiency and prediction accuracy for the task-specific models compared to separately trained models. In this paper, we make an observation of such influences for important remote sensing applications like elevation model generation and semantic segmentation tasks from the stereo half-meter resolution satellite digital surface models (DSMs). Mainly, we aim to generate good-quality DSMs with complete, as well as accurate level of detail (LoD)2-like building forms and to assign an object class label to each pixel in the DSMs. For the label assignment task, we select the roof type classification problem to distinguish between flat, non-flat, and background pixels. To realize those tasks, we train a conditional generative adversarial network (cGAN) with an objective function based on least squares residuals and an auxiliary term based on normal vectors for further roof surface refinement. Besides, we investigate recently published deep learning architectures for both tasks and develop the final end-to-end network, which combines different models, as using them first separately, they provide the best results for their individual tasks.
elib-URL des Eintrags: | https://elib.dlr.de/127861/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Multi-Task cGAN for Simultaneous Spaceborne DSM Refinement and Roof-Type Classification | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 28 Mai 2019 | ||||||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 11 | ||||||||||||||||||||
DOI: | 10.3390/rs11111262 | ||||||||||||||||||||
Seitenbereich: | Seiten 1262-1284 | ||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | multi-task learning; conditional generative adversarial networks; digital surface model; 3D scene refinement; semantic segmentation; roof type classification; urban region; satellite imagery | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - D.MoVe (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Bittner, Ksenia | ||||||||||||||||||||
Hinterlegt am: | 14 Jun 2019 10:26 | ||||||||||||||||||||
Letzte Änderung: | 31 Okt 2023 14:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags