Li, Yu und Martinis, Sandro und Wieland, Marc (2019) Urban flood mapping with an active self-learning convolutional neural network based on TerraSAR-X intensity and interferometric coherence. ISPRS Journal of Photogrammetry and Remote Sensing, 152, Seiten 178-191. Elsevier. doi: 10.1016/j.isprsjprs.2019.04.014. ISSN 0924-2716.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S092427161930111X
Kurzfassung
Synthetic Aperture Radar (SAR) remote sensing has been widely used for flood mapping and monitoring. Nevertheless, flood detection in urban areas still proves to be particularly challenging by using SAR. In this paper, we assess the roles of SAR intensity and interferometric coherence in urban flood detection using multi-temporal TerraSAR-X data. We further introduce an active self-learning convolution neural network (A-SL CNN) framework to alleviate the effect of a limited annotated training dataset. The proposed framework selects informative unlabeled samples based on a temporal-ensembling CNN model. These samples are subsequently pseudo-labeled by a multi-scale spatial filter. Consistency regularization is introduced to penalize incorrect labels caused by pseudo-labeling. We show results for a case study that is centered on flooded areas in Houston, USA, during hurricane Harvey in August 2017. Our experiments show that multi-temporal intensity (pre- and co-event) plays the most important role in urban flood detection. Adding multi-temporal coherence can increase the reliability of the inundation map considerably. Meanwhile, encouraging results are achieved by the proposed A-SL CNN framework: the k statistic is improved from 0.614 to 0.686 in comparison to its supervised counterpart.
elib-URL des Eintrags: | https://elib.dlr.de/127744/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Urban flood mapping with an active self-learning convolutional neural network based on TerraSAR-X intensity and interferometric coherence | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2019 | ||||||||||||||||
Erschienen in: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 152 | ||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2019.04.014 | ||||||||||||||||
Seitenbereich: | Seiten 178-191 | ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Urban flooding; Multi-temporal SAR; Interferometric coherence; Active learning; Self-learning; Convolution neural network | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||
Hinterlegt von: | Martinis, Sandro | ||||||||||||||||
Hinterlegt am: | 19 Jun 2019 09:34 | ||||||||||||||||
Letzte Änderung: | 22 Nov 2023 07:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags