Kersten, Jens und Kruspe, Anna und Wiegmann, Matti und Klan, Friederike (2019) Robust filtering of crisis-related tweets. In: ISCRAM 2019 Conference Proceedings - 16th International Conference on Information Systems for Crisis Response and Management. ISCRAM 2019, 2019-05-19 - 2019-05-22, Valencia, Spanien.
PDF
2MB |
Offizielle URL: http://idl.iscram.org/files/jenskersten1/2019/1763_JensKersten1_etal2019.pdf
Kurzfassung
Social media enables fast information exchange and status reporting during crises. Filtering is usually required to identify the small fraction of social media stream data related to events. Since deep learning has recently shown to be a reliable approach for filtering and analyzing Twitter messages, a Convolutional Neural Network is examined for filtering crisis-related tweets in this work. The goal is to understand how to obtain accurate and robust filtering models and how model accuracies tend to behave in case of new events. In contrast to other works, the application to real data streams is also investigated. Motivated by the observation that machine learning model accuracies highly depend on the used data, a new comprehensive and balanced compilation of existing data sets is proposed.Experimental results with this data set provide valuable insights. Preliminary results from filtering a data stream recorded during hurricane Florence in September 2018 confirm our results.
elib-URL des Eintrags: | https://elib.dlr.de/127586/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Robust filtering of crisis-related tweets | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||
Erschienen in: | ISCRAM 2019 Conference Proceedings - 16th International Conference on Information Systems for Crisis Response and Management | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Filtering, Convolutional Neural Networks, Natural Disasters, Twitter, Model Transferability | ||||||||||||||||||||
Veranstaltungstitel: | ISCRAM 2019 | ||||||||||||||||||||
Veranstaltungsort: | Valencia, Spanien | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 19 Mai 2019 | ||||||||||||||||||||
Veranstaltungsende: | 22 Mai 2019 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||||||
Standort: | Jena | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Bürgerwissenschaften | ||||||||||||||||||||
Hinterlegt von: | Kersten, Dr.-Ing. Jens | ||||||||||||||||||||
Hinterlegt am: | 03 Jun 2019 11:45 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:31 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags