Kornfeld, Nils und Feng, Zachary (2019) A Latent Variable Model State Estimation System for Image Sequences. In: 22nd International Conference on Information Fusion, FUSION 2019. 22nd International Conference on Information Fusion, 2019-07-02 - 2019-07-05, Ottawa, Kanada.
Dies ist die aktuellste Version dieses Eintrags.
PDF
2MB |
Offizielle URL: https://fusion2019.org/
Kurzfassung
Self-driving cars need to be able to assess and understand the state of their surroundings. To achieve this goal, it is necessary to construct a model, which holds information about the state of the environment, based on sensor measurements. In common state estimation systems like Kalman filters, it is necessary to explicitly model state transitions and the Observation process. These models have to match the internal dynamics of the observed system as closely as possible to yield reliable estimation results. In this work, we propose a method that can learn an approximation of the internal dynamics of a system, without the need to explicitly model these processes. Our system even works on highly complex data like frames of a video sequence. The approach is based on a latent variable model with a continuous hidden state space. To deal with the fact that the estimated processes are sequential, we use recurrent neural networks. As an example to show the potential of this system, resulting predicted future frames of short video sequences are shown. The proposed system shows a general approach for state estimation without the need for any knowledge about the underlying state transition or observation processes.
elib-URL des Eintrags: | https://elib.dlr.de/127325/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | A Latent Variable Model State Estimation System for Image Sequences | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Juli 2019 | ||||||||||||
Erschienen in: | 22nd International Conference on Information Fusion, FUSION 2019 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | artificial intelligence, Image prediction, predictive models, predictive Encoding, artificial neural networks | ||||||||||||
Veranstaltungstitel: | 22nd International Conference on Information Fusion | ||||||||||||
Veranstaltungsort: | Ottawa, Kanada | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 2 Juli 2019 | ||||||||||||
Veranstaltungsende: | 5 Juli 2019 | ||||||||||||
Veranstalter : | ISIF - International Society of Information Fusion | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - D.MoVe (alt) | ||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Datenerfassung und Informationsgewinnung | ||||||||||||
Hinterlegt von: | Kornfeld, Nils | ||||||||||||
Hinterlegt am: | 15 Mai 2019 10:34 | ||||||||||||
Letzte Änderung: | 04 Nov 2024 13:30 |
Verfügbare Versionen dieses Eintrags
- A Latent Variable Model State Estimation System for Image Sequences. (deposited 15 Mai 2019 10:34) [Gegenwärtig angezeigt]
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags