Haluszczynski, Alexander und Räth, Christoph und Laut, Ingo und Schwabe, Mierk (2019) Assessing and improving the replication of chaotic attractors by means of reservoir computing. DPG Frühjahrestagung, 2019-04-01 - 2019-04-05, Regensburg.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
The prediction of complex nonlinear dynamical systems with the help of machine learning techniques has become increasingly popular. In particular, the so-called "reservoir computing" method turned out to be a very promising approach especially for the reproduction of the long-term properties of the system [1]. Yet, a thorough statistical analysis of the forecast results is missing. So far the standard approach is to use purely random Erdös-Renyi networks for the reservoir in the model. It is obvious that there is a variety of conceivable network topologies that may have an influence on the results. Using the Lorenz System we statistically analyze the quality of predicition for different parametrizations - both the exact short term prediction as well as the reproduction of the long-term properties of the system as estimated by the correlation dimension and largest Lyapunov exponent. We find that both short and longterm predictions vary significantly. Thus special care must be taken in selecting the good predictions. We investigate the benefit of using different network topologies such as Small World or Scale Free networks and show which effect they have on the prediction quality. Our results suggest that the overall performance is best for small world networks. [1] J. Pathak et al., Chaos, 27, 121102 (2017)
elib-URL des Eintrags: | https://elib.dlr.de/127109/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Assessing and improving the replication of chaotic attractors by means of reservoir computing | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | April 2019 | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Nonlinear time series analysis, strange attractor, machine learning, prediction | ||||||||||||||||||||
Veranstaltungstitel: | DPG Frühjahrestagung | ||||||||||||||||||||
Veranstaltungsort: | Regensburg | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 1 April 2019 | ||||||||||||||||||||
Veranstaltungsende: | 5 April 2019 | ||||||||||||||||||||
Veranstalter : | DPG | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Forschung unter Weltraumbedingungen | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R FR - Forschung unter Weltraumbedingungen | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Komplexe Plasmen / Datenanalyse (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Materialphysik im Weltraum > Gruppe Komplexe Plasmen | ||||||||||||||||||||
Hinterlegt von: | Räth, Christoph | ||||||||||||||||||||
Hinterlegt am: | 15 Apr 2019 08:02 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags