elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Machine Learning Application in Air Traffic Management Resiliency based on Capacity Regulations

Sanaei, Rasoul und Lau, Alexander und Linke, Florian und Gollnick, Volker (2019) Machine Learning Application in Air Traffic Management Resiliency based on Capacity Regulations. In: 38th IEEE/AIAA Digital Avionics Systems Conference, DASC 2019. 2019 AIAA/IEEE 38th Digital Avionics Systems Conference (DASC), 2019-09-08 - 2019-09-12, San Diego, California, USA. doi: 10.1109/DASC43569.2019.9081651. ISBN 978-172810649-6. ISSN 2155-7195.

[img] PDF
77kB

Kurzfassung

There is a considerable interest in air transportation resilience as a mechanism to cope with the consequences of disruptions to local authorities. Although the identification of metrics and baselines for measuring resilience are still regarded as challenges, we believe that the meaning of disruptions is no longer driven solely by safety threats but also by emergent performance issues. In this paper, resilience of the European Air Traffic Management Network (EATMN) is studied from a performance perspective. In fact, improved predictability and reliability of planning data across the EATMN, allow reduction of reserved Air Traffic Management (ATM) capacity. Consequently, the management of emergent demand-capacity imbalances, regarded as disruptions, is added to tactical phase of Air Fraffic Flow and Capacity Management (ATFCM). In this phase of operations (i.e. day-of-operations) a limited number of variables are available to form aggregated indicators for network resilience. We consider that available ATFCM regulations data reveal restorative mechanisms for tactical Demand-Capacity Balancing (DCB). Aggregated indicators are regarded as enablers to monitor the resilient management of Area Control Centers and to observe spatial distribution of network resiliency. This paper presents an exploratory effort of the needed situational awareness by exploring supervised learning techniques in the context of ATFCM regulations to predict Air Traffic Flow Management (ATFM) delay. In particular, it focuses on the application of machine learning algorithms and comparison of different architecture variants to a regression study on tactical DCB disruptions.

elib-URL des Eintrags:https://elib.dlr.de/126926/
Dokumentart:Konferenzbeitrag (Vortrag, Anderer)
Titel:Machine Learning Application in Air Traffic Management Resiliency based on Capacity Regulations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sanaei, RasoulRasoul.Sanaei (at) dlr.dehttps://orcid.org/0000-0001-7063-5114NICHT SPEZIFIZIERT
Lau, AlexanderAlexander.Lau (at) dlr.dehttps://orcid.org/0000-0001-6150-6169NICHT SPEZIFIZIERT
Linke, FlorianFlorian.Linke (at) dlr.dehttps://orcid.org/0000-0003-1403-3471NICHT SPEZIFIZIERT
Gollnick, VolkerVolker.Gollnick (at) dlr.dehttps://orcid.org/0000-0001-7214-0828NICHT SPEZIFIZIERT
Datum:2019
Erschienen in:38th IEEE/AIAA Digital Avionics Systems Conference, DASC 2019
Referierte Publikation:Ja
Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/DASC43569.2019.9081651
ISSN:2155-7195
ISBN:978-172810649-6
Status:veröffentlicht
Stichwörter:Network Resilience, ATFCM regulations, Emergent disruptions, Machine Learning, Neural networks, Supervised Learning
Veranstaltungstitel:2019 AIAA/IEEE 38th Digital Avionics Systems Conference (DASC)
Veranstaltungsort:San Diego, California, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:8 September 2019
Veranstaltungsende:12 September 2019
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehrsmanagement und Flugbetrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AO - Air Traffic Management and Operation
DLR - Teilgebiet (Projekt, Vorhaben):L - Luftverkehrskonzepte und Betrieb (alt)
Standort: Hamburg
Institute & Einrichtungen:Lufttransportsysteme > Luftverkehrsinfrastrukturen und Prozesse
Hinterlegt von: Sanaei, Rasoul
Hinterlegt am:08 Apr 2019 09:19
Letzte Änderung:24 Apr 2024 20:30

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.