Sanaei, Rasoul und Lau, Alexander und Linke, Florian und Gollnick, Volker (2019) Machine Learning Application in Air Traffic Management Resiliency based on Capacity Regulations. In: 38th IEEE/AIAA Digital Avionics Systems Conference, DASC 2019. 2019 AIAA/IEEE 38th Digital Avionics Systems Conference (DASC), 2019-09-08 - 2019-09-12, San Diego, California, USA. doi: 10.1109/DASC43569.2019.9081651. ISBN 978-172810649-6. ISSN 2155-7195.
PDF
77kB |
Kurzfassung
There is a considerable interest in air transportation resilience as a mechanism to cope with the consequences of disruptions to local authorities. Although the identification of metrics and baselines for measuring resilience are still regarded as challenges, we believe that the meaning of disruptions is no longer driven solely by safety threats but also by emergent performance issues. In this paper, resilience of the European Air Traffic Management Network (EATMN) is studied from a performance perspective. In fact, improved predictability and reliability of planning data across the EATMN, allow reduction of reserved Air Traffic Management (ATM) capacity. Consequently, the management of emergent demand-capacity imbalances, regarded as disruptions, is added to tactical phase of Air Fraffic Flow and Capacity Management (ATFCM). In this phase of operations (i.e. day-of-operations) a limited number of variables are available to form aggregated indicators for network resilience. We consider that available ATFCM regulations data reveal restorative mechanisms for tactical Demand-Capacity Balancing (DCB). Aggregated indicators are regarded as enablers to monitor the resilient management of Area Control Centers and to observe spatial distribution of network resiliency. This paper presents an exploratory effort of the needed situational awareness by exploring supervised learning techniques in the context of ATFCM regulations to predict Air Traffic Flow Management (ATFM) delay. In particular, it focuses on the application of machine learning algorithms and comparison of different architecture variants to a regression study on tactical DCB disruptions.
elib-URL des Eintrags: | https://elib.dlr.de/126926/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Anderer) | ||||||||||||||||||||
Titel: | Machine Learning Application in Air Traffic Management Resiliency based on Capacity Regulations | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||
Erschienen in: | 38th IEEE/AIAA Digital Avionics Systems Conference, DASC 2019 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/DASC43569.2019.9081651 | ||||||||||||||||||||
ISSN: | 2155-7195 | ||||||||||||||||||||
ISBN: | 978-172810649-6 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Network Resilience, ATFCM regulations, Emergent disruptions, Machine Learning, Neural networks, Supervised Learning | ||||||||||||||||||||
Veranstaltungstitel: | 2019 AIAA/IEEE 38th Digital Avionics Systems Conference (DASC) | ||||||||||||||||||||
Veranstaltungsort: | San Diego, California, USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 8 September 2019 | ||||||||||||||||||||
Veranstaltungsende: | 12 September 2019 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Luftverkehrsmanagement und Flugbetrieb | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L AO - Air Traffic Management and Operation | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Luftverkehrskonzepte und Betrieb (alt) | ||||||||||||||||||||
Standort: | Hamburg | ||||||||||||||||||||
Institute & Einrichtungen: | Lufttransportsysteme > Luftverkehrsinfrastrukturen und Prozesse | ||||||||||||||||||||
Hinterlegt von: | Sanaei, Rasoul | ||||||||||||||||||||
Hinterlegt am: | 08 Apr 2019 09:19 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags