elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Automatic Annotation of Airborne Images by Label Propagation Based on a Bayesian-CRF Model

Zhuo, Xiangyu und Fraundorfer, Friedrich und Kurz, Franz und Reinartz, Peter (2019) Automatic Annotation of Airborne Images by Label Propagation Based on a Bayesian-CRF Model. Remote Sensing, 11, 145/1-145/24. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs11020145. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
70MB

Offizielle URL: http://www.mdpi.com/2072-4292/11/2/145

Kurzfassung

The tremendous advances in deep neural networks have demonstrated the superiority of deep learning techniques for applications such as object recognition or image classification. Nevertheless, deep learning-based methods usually require a large amount of training data, which mainly comes from manual annotation and is quite labor-intensive. In order to reduce the amount of manual work required for generating enough training data, we hereby propose to leverage existing labeled data to generate image annotations automatically. Specifically, the pixel labels are firstly transferred from one image modality to another image modality via geometric transformation to create initial image annotations, and then additional information (e.g., height measurements) is incorporated for Bayesian inference to update the labeling beliefs. Finally, the updated label assignments are optimized with a fully connected conditional random field (CRF), yielding refined labeling for all pixels in the image. The proposed approach is tested on two different scenarios, i.e., (1) label propagation from annotated aerial imagery to unmanned aerial vehicle (UAV) imagery and (2) label propagation from map database to aerial imagery. In each scenario, the refined image labels are used as pseudo-ground truth data for training a convolutional neural network (CNN). Results demonstrate that our model is able to produce accurate label assignments even around complex object boundaries; besides, the generated image labels can be effectively leveraged for training CNNs and achieve comparable classification accuracy as manual image annotations, more specifically, the per-class classification accuracy of the networks trained by the manual image annotations and the generated image labels have a difference within ±5%.

elib-URL des Eintrags:https://elib.dlr.de/126836/
Dokumentart:Zeitschriftenbeitrag
Titel:Automatic Annotation of Airborne Images by Label Propagation Based on a Bayesian-CRF Model
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Zhuo, XiangyuXiangyu.Zhuo (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fraundorfer, Friedrichfraundorfer (at) icg.tugraz.atNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kurz, Franzfranz.kurz (at) dlr.dehttps://orcid.org/0000-0003-1718-0004NICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:13 Januar 2019
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.3390/rs11020145
Seitenbereich:145/1-145/24
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:automatic image annotation; label propagation; Conditional Random Field (CRF); Convolutional Neural Network (CNN)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - Vabene++ (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Zhuo, Xiangyu
Hinterlegt am:19 Mär 2019 14:34
Letzte Änderung:08 Nov 2023 10:23

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.