Koch, Tobias und Liebel, Lukas und Fraundorfer, Friedrich und Körner, Marco (2018) Evaluation of CNN-based Single-Image Depth Estimation Methods. In: 15th European Conference on Computer Vision, ECCV 2018, Seiten 331-348. European Conference on Computer Vision (ECCV) 2018, 2018-09-08 - 2018-09-14, Munich, Germany. doi: 10.1007/978-3-030-11015-4_25. ISBN 978-3-030-11014-7.
PDF
5MB |
Offizielle URL: https://eccv2018.org/
Kurzfassung
While an increasing interest in deep models for single-image depth estimation (SIDE) can be observed, established schemes for their evaluation are still limited. We propose a set of novel quality criteria, allowing for a more detailed analysis by focusing on specific characteristics of depth maps. In particular, we address the preservation of edges and planar regions, depth consistency, and absolute distance accuracy. In order to employ these metrics to evaluate and compare state-of-the-art SIDE approaches, we provide a new high-quality RGB-D dataset. We used a digital single-lens reflex (DSLR) camera together with a laser scanner to acquire high-resolution images and highly accurate depth maps. Experimental results show the validity of our proposed evaluation protocol.
elib-URL des Eintrags: | https://elib.dlr.de/126833/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Evaluation of CNN-based Single-Image Depth Estimation Methods | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2018 | ||||||||||||||||||||
Erschienen in: | 15th European Conference on Computer Vision, ECCV 2018 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1007/978-3-030-11015-4_25 | ||||||||||||||||||||
Seitenbereich: | Seiten 331-348 | ||||||||||||||||||||
Name der Reihe: | Lecture Notes in Computer Science | ||||||||||||||||||||
ISBN: | 978-3-030-11014-7 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Single-image depth estimation Deep learning CNN RGB-D Benchmark Evaluation Dataset Error metrics | ||||||||||||||||||||
Veranstaltungstitel: | European Conference on Computer Vision (ECCV) 2018 | ||||||||||||||||||||
Veranstaltungsort: | Munich, Germany | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 8 September 2018 | ||||||||||||||||||||
Veranstaltungsende: | 14 September 2018 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Hinterlegt am: | 15 Mär 2019 13:17 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags