Wagner, H.N.R. und Köke, H. und Dähne, S. und Niemann, S. und Hühne, C. und Khakimova, R. (2019) Decision Tree-based Machine Learning to Optimize the Laminate Stacking of Composite Cylinders for Maximum Buckling Load and Minimum Imperfection Sensitivity. Composite Structures. Elsevier. ISSN 0263-8223.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
4MB |
Offizielle URL: http://www.sciencedirect.com/science/article/pii/S0263822318341710
Kurzfassung
Launch-vehicle primary structures like cylindrical shells are increasingly being built as monolithic composite and sandwich composite shells. These imperfection sensitive shells are subjected to axial compression due to the weight of the upper structural elements and tend to buckle under axial compression. In the case of composite shells the buckling load and imperfection sensitivity depend on the laminate stacking sequence. Within this paper multi-objective optimizations for the laminate stacking sequence of composite cylinder under axial compression are performed. The optimization is based on different geometric imperfection types and a brute force approach for three different ply angles. Decision tree-based machine learning is applied to derive general design recommendations which lead to maximum buckling load and a minimum imperfection sensitivity. The design recommendation are based on the relative membrane, bending, in-plane shear and twisting stiffnesses. Several optimal laminate stacking sequences are generated and compared with similar laminate configurations from literature. The results show that the design recommendations of this article lead to high-performance cylinders which outperform comparable composite shells considerably. The results of this article may be the basis for future lightweight design of sandwich and monolithic composite cylinders of modern launch-vehicle primary structures.
elib-URL des Eintrags: | https://elib.dlr.de/126747/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Decision Tree-based Machine Learning to Optimize the Laminate Stacking of Composite Cylinders for Maximum Buckling Load and Minimum Imperfection Sensitivity | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||||||||||
Erschienen in: | Composite Structures | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||||||
ISSN: | 0263-8223 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Buckling, robust design, knockdown factor, imperfection sensitivity, composite shell, postbuckling, optimization, machine learning, decision tree | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Raumtransport | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RP - Raumtransport | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Leitprojekt - Forschungsverbund Oberstufe (alt) | ||||||||||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Faserverbundleichtbau und Adaptronik > Funktionsleichtbau | ||||||||||||||||||||||||||||
Hinterlegt von: | Hühne, Prof. Dr. Christian | ||||||||||||||||||||||||||||
Hinterlegt am: | 08 Jul 2019 15:49 | ||||||||||||||||||||||||||||
Letzte Änderung: | 26 Jun 2023 14:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags