Xu, Jian und Heue, Klaus-Peter und Loyola, Diego und Efremenko, Dmitry (2019) Satellite remote sensing of ozone using a Full-Physics Inverse Learning Machine. In: 2019 Conference on Big Data from Space (BiDS'19), Seiten 165-168. Joint Research Centre (JRC). The 2019 Conference on Big Data from Space (BiDS'19), 2019-02-19 - 2019-02-21, Munich, Germany. doi: 10.2760/848593. ISBN 978-92-76-00034-1. ISSN 1831-9424.
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: https://www.bigdatafromspace2019.org/QuickEventWebsitePortal/2019-conference-on-big-data-from-space-bids19/bids-2019
Kurzfassung
The new generation of environmental satellites with increased spatial and spectral resolutions imposes critical challenges for the processing of the Big Data. This work employs the newly-developed full-physics inverse learning machine (FP-ILM) to estimate vertical distributions of ozone from Global Ozone Monitoring Experiment - 2 (GOME-2) measurements and analyzed its performance. The obtained ozone profile shapes are further used to derive the vertical column density of ozone. The main advantage of FP-ILM is that, unlike classical retrieval algorithms, the ozone profile retrieval is formulated as a classification problem, producing a significant speed-up and reliable accuracy. The time-consuming radiative transfer computations and neural network training are performed off-line and do not introduce additional performance bottlenecks in the whole processing chain. Therefore FP-ILMs are suitable for processing remote sensing Big Data.
elib-URL des Eintrags: | https://elib.dlr.de/126642/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Satellite remote sensing of ozone using a Full-Physics Inverse Learning Machine | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2019 | ||||||||||||||||||||
Erschienen in: | 2019 Conference on Big Data from Space (BiDS'19) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.2760/848593 | ||||||||||||||||||||
Seitenbereich: | Seiten 165-168 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | Joint Research Centre (JRC) | ||||||||||||||||||||
ISSN: | 1831-9424 | ||||||||||||||||||||
ISBN: | 978-92-76-00034-1 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Atmospheric remote sensing, ozone, FP-ILM, machine learning | ||||||||||||||||||||
Veranstaltungstitel: | The 2019 Conference on Big Data from Space (BiDS'19) | ||||||||||||||||||||
Veranstaltungsort: | Munich, Germany | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 19 Februar 2019 | ||||||||||||||||||||
Veranstaltungsende: | 21 Februar 2019 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, Vorhaben Spektroskopische Verfahren in der Fernerkundung (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||||||
Hinterlegt von: | Xu, Dr.-Ing. Jian | ||||||||||||||||||||
Hinterlegt am: | 25 Feb 2019 11:54 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags