Xu, Jian und Heue, Klaus-Peter und Loyola, Diego und Efremenko, Dmitry (2019) Satellite remote sensing of ozone using a Full-Physics Inverse Learning Machine. In: 2019 Conference on Big Data from Space (BiDS'19), Seiten 165-168. Joint Research Centre (JRC). The 2019 Conference on Big Data from Space (BiDS'19), 2019-02-19 - 2019-02-21, Munich, Germany. doi: 10.2760/848593. ISBN 978-92-76-00034-1. ISSN 1831-9424.
|
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: https://www.bigdatafromspace2019.org/QuickEventWebsitePortal/2019-conference-on-big-data-from-space-bids19/bids-2019
Kurzfassung
The new generation of environmental satellites with increased spatial and spectral resolutions imposes critical challenges for the processing of the Big Data. This work employs the newly-developed full-physics inverse learning machine (FP-ILM) to estimate vertical distributions of ozone from Global Ozone Monitoring Experiment - 2 (GOME-2) measurements and analyzed its performance. The obtained ozone profile shapes are further used to derive the vertical column density of ozone. The main advantage of FP-ILM is that, unlike classical retrieval algorithms, the ozone profile retrieval is formulated as a classification problem, producing a significant speed-up and reliable accuracy. The time-consuming radiative transfer computations and neural network training are performed off-line and do not introduce additional performance bottlenecks in the whole processing chain. Therefore FP-ILMs are suitable for processing remote sensing Big Data.
| elib-URL des Eintrags: | https://elib.dlr.de/126642/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
| Titel: | Satellite remote sensing of ozone using a Full-Physics Inverse Learning Machine | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 2019 | ||||||||||||||||||||
| Erschienen in: | 2019 Conference on Big Data from Space (BiDS'19) | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Nein | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| DOI: | 10.2760/848593 | ||||||||||||||||||||
| Seitenbereich: | Seiten 165-168 | ||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||
| Verlag: | Joint Research Centre (JRC) | ||||||||||||||||||||
| ISSN: | 1831-9424 | ||||||||||||||||||||
| ISBN: | 978-92-76-00034-1 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Atmospheric remote sensing, ozone, FP-ILM, machine learning | ||||||||||||||||||||
| Veranstaltungstitel: | The 2019 Conference on Big Data from Space (BiDS'19) | ||||||||||||||||||||
| Veranstaltungsort: | Munich, Germany | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 19 Februar 2019 | ||||||||||||||||||||
| Veranstaltungsende: | 21 Februar 2019 | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, Vorhaben Spektroskopische Verfahren in der Fernerkundung (alt) | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||||||
| Hinterlegt von: | Xu, Dr.-Ing. Jian | ||||||||||||||||||||
| Hinterlegt am: | 25 Feb 2019 11:54 | ||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags