del Aguila, Ana und Molina García, Víctor und Efremenko, Dmitry (2019) Dimensionality reduction of optical data: application to total ozone column retrieval. In: Proceedings of the 2019 conference on Big Data from Space (BiDS'19), Seiten 261-264. European Union. Big Data from Space (BiDS’19), 2019-02-19 - 2019-02-21, Munich, Germany. doi: 10.2760/848593. ISBN 978-92-76-00034-1. ISSN 1831-9424.
PDF
2MB |
Offizielle URL: http://publications.jrc.ec.europa.eu/repository/bitstream/JRC115761/procbids19.pdf
Kurzfassung
The new generation of atmospheric composition sensors such as TROPOMI, deliver a great amount of data, which is recognized as Big Data. To process the challenging data volumes of spectral information, fast radiative transfer models (RTMs) are required. However, the bottleneck in remote sensing retrieval problems is the computation of the radiative transfer. Thus, the operational processing of remote sensing data requires high-performance RTMs for simulating spectral radiances (level-1 data). In particular, ozone total column retrieval algorithms use the level-1 data in the Huggins band (325-335 nm). Hence, accurate simulation of this absorption band may require several hundreds of monochromatic computations. However, hyper-spectral input data for RTMs has a redundant information, which can be excluded by using the dimensionality reduction techniques. In addition, there is a strong correlation between the input optical data for RTMs and output radiances. Such statistical dependency can be taken into account for accelerating level-1 data simulations using principal component analysis (PCA), thereby providing the performance enhancement for the whole processing chain. In this paper we analyze the efficiency and potential benefits of the optical data dimensionality reduction schemes for simulating the Huggins band and discuss several modifications of this approach.
elib-URL des Eintrags: | https://elib.dlr.de/126638/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Dimensionality reduction of optical data: application to total ozone column retrieval | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2019 | ||||||||||||||||
Erschienen in: | Proceedings of the 2019 conference on Big Data from Space (BiDS'19) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.2760/848593 | ||||||||||||||||
Seitenbereich: | Seiten 261-264 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | European Union | ||||||||||||||||
ISSN: | 1831-9424 | ||||||||||||||||
ISBN: | 978-92-76-00034-1 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | PCA, data-driven algorithms, trace gas retrieval | ||||||||||||||||
Veranstaltungstitel: | Big Data from Space (BiDS’19) | ||||||||||||||||
Veranstaltungsort: | Munich, Germany | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 19 Februar 2019 | ||||||||||||||||
Veranstaltungsende: | 21 Februar 2019 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||
Hinterlegt von: | Efremenko, Dr Dmitry | ||||||||||||||||
Hinterlegt am: | 25 Feb 2019 10:44 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags