Junghans, Marek und Leich, Andreas (2019) Fusion based estimation of the a-priori probability distribution of unknown non-stationary processes. In: 22nd International Conference on Information Fusion, FUSION 2019, Seiten 1-8. 22nd International Conference on Information Fusion, 2019-07-02 - 2019-07-05, Ottawa, Canada.
PDF
684kB |
Offizielle URL: https://www.fusion2019.org/
Kurzfassung
Non-stationary processes can be hard to handle, particular if one would like to know their characterizing time dependent probability functions. In this paper the a-priori probability distributions of unknown non-stationary processes are estimated with different combinations of weakly coupled sensors. For quantification of the unknown a-priori probabilities Bayesian Networks (BN) are adopted for data fusion and Dirichlet functions are applied on non-stationary, time-dependent maximum likelihood (ML) parameter learning. In several experiments the adaption of the non-stationary a-priori probability density functions is shown and the accuracy of data fusion regarding the underlying process variables with different characteristics are determined quantitatively. It is shown that the proposed algorithm can improve data fusion in case conditions for specific process and sensor characteristics are met.
elib-URL des Eintrags: | https://elib.dlr.de/126481/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Fusion based estimation of the a-priori probability distribution of unknown non-stationary processes | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 4 Juli 2019 | ||||||||||||
Erschienen in: | 22nd International Conference on Information Fusion, FUSION 2019 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Seitenbereich: | Seiten 1-8 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Bayesian Networks, Maximum-likelihood parameter learning, non-stationary processes | ||||||||||||
Veranstaltungstitel: | 22nd International Conference on Information Fusion | ||||||||||||
Veranstaltungsort: | Ottawa, Canada | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 2 Juli 2019 | ||||||||||||
Veranstaltungsende: | 5 Juli 2019 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - D.MoVe (alt) | ||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Datenerfassung und Informationsgewinnung | ||||||||||||
Hinterlegt von: | Junghans, Marek | ||||||||||||
Hinterlegt am: | 19 Aug 2019 12:26 | ||||||||||||
Letzte Änderung: | 04 Nov 2024 13:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags