elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

On impedance conditions for circular multiperforated acoustic liners

Schmidt, Kersten und Semin, Adrien und Thöns-Zueva, Anastasia und Bake, Friedrich (2018) On impedance conditions for circular multiperforated acoustic liners. Journal of Mathematics in Industry, 8 (1), Seite 15. Springer. doi: 10.1186/s13362-018-0057-0. ISSN 2190-5983.

[img] PDF
2MB

Offizielle URL: hƩps://rdcu.be/bdQz5

Kurzfassung

Background: The acoustic damping in gas turbines and aero-engines relies to a great extent on acoustic liners that consists of a cavity and a perforated face sheet. The prediction of the impedance of the liners by direct numerical simulation is nowadays not feasible due to the hundreds to thousands repetitions of tiny holes. We introduce a procedure to numerically obtain the Rayleigh conductivity for acoustic liners for viscous gases at rest, and with it define the acoustic impedance of the perforated sheet. Results: The proposed method decouples the effects that are dominant on different scales: (a) viscous and incompressible flow at the scale of one hole, (b) inviscid and incompressible flow at the scale of the hole pattern, and (c) inviscid and compressible flow at the scale of the wave-length. With the method of matched asymptotic expansions we couple the different scales and eventually obtain effective impedance conditions on the macroscopic scale. For this the effective Rayleigh conductivity results by numerical solution of an instationary Stokes problem in frequency domain around one hole with prescribed pressure at infinite distance to the aperture. It depends on hole shape, frequency, mean density and viscosity divided by the area of the periodicity cell. This enables us to estimate dissipation losses and transmission properties, that we compare with acoustic measurements in a duct acoustic test rig with a circular cross-section by the German Aerospace Center in Berlin. Conclusions: A precise and reasonable definition of an effective Rayleigh conductivity at the scale of one hole is proposed and impedance conditions for the macroscopic pressure or velocity are derived in a systematic procedure. The comparison with experiments show that the derived impedance conditions give a good prediction of the dissipation losses.

elib-URL des Eintrags:https://elib.dlr.de/125905/
Dokumentart:Zeitschriftenbeitrag
Titel:On impedance conditions for circular multiperforated acoustic liners
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schmidt, KerstenTechnische Universität Darmstadthttps://orcid.org/0000-0001-7729-6960NICHT SPEZIFIZIERT
Semin, AdrienTechnische Universität DarmstadtNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Thöns-Zueva, AnastasiaTechnische Universität BerlinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bake, FriedrichFriedrich.Bake (at) dlr.dehttps://orcid.org/0000-0002-3235-428XNICHT SPEZIFIZIERT
Datum:18 Dezember 2018
Erschienen in:Journal of Mathematics in Industry
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:8
DOI:10.1186/s13362-018-0057-0
Seitenbereich:Seite 15
Verlag:Springer
ISSN:2190-5983
Status:veröffentlicht
Stichwörter:Acoustic liner; Perforated plates; Multiscale analysis; Rayleigh conductivity; Impedance conditions
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Antriebssysteme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L ER - Engine Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Brennkammertechnologien (alt), L - Turbinentechnologien (alt)
Standort: Berlin-Charlottenburg
Institute & Einrichtungen:Institut für Antriebstechnik > Triebwerksakustik
Hinterlegt von: Bake, Dr.-Ing. Friedrich
Hinterlegt am:15 Jan 2019 11:05
Letzte Änderung:14 Dez 2019 04:25

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.