Piendl, Raphael und Matteis, Tilman und Liedtke, Gernot (2018) A machine learning approach for operationalization of latent classes in a discrete shipment size choice model. Transportation Research, Part E: Logistics and Transportation Review. Elsevier. doi: 10.1016/j.tre.2018.03.005. ISSN 1366-5545.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
This paper elaborates a novel approach for implementation of latent segments concerning behaviorally sensitive shipment size choice in strategic interregional freight transport models. Discrete shipment size choice models are estimated for different homogenous segments formed by latent class analysis. A machine learning technique called Bayesian classifier is applied to link segments obtained from a sample to data of commodity flows being available on a national level. Finally, in an exemplary scenario, the impact of information and communication technologies on shipment size distributions is calculated, revealing moderate elasticities and a predominant substitution of less than truck loads by full truck loads.
elib-URL des Eintrags: | https://elib.dlr.de/125791/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | A machine learning approach for operationalization of latent classes in a discrete shipment size choice model | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2018 | ||||||||||||||||
Erschienen in: | Transportation Research, Part E: Logistics and Transportation Review | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1016/j.tre.2018.03.005 | ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
ISSN: | 1366-5545 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Freight transport; Shipment size; Latent class analysis; Machine learning; Bayesian classification | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Verkehrsentwicklung und Umwelt II (alt) | ||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrsforschung > Wirtschaftsverkehr | ||||||||||||||||
Hinterlegt von: | Huber, Linda | ||||||||||||||||
Hinterlegt am: | 11 Jan 2019 09:55 | ||||||||||||||||
Letzte Änderung: | 03 Nov 2023 10:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags