elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep-Learning segmentation and 3D reconstruction of road markings using multi-view aerial imagery

Kurz, Franz und Azimi, Seyedmajid und Sheu, Chun-Yu und Angelo, Pablo (2019) Deep-Learning segmentation and 3D reconstruction of road markings using multi-view aerial imagery. ISPRS International Journal of Geo-Information, 8 (47), Seiten 1-16. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/ijgi8010047. ISSN 2220-9964.

[img] PDF
53MB

Offizielle URL: http://www.mdpi.com/2220-9964/8/1/47/pdf

Kurzfassung

The 3D information of road infrastructures are gaining importance with the development of autonomous driving. In this context, the exact 2D position of the road markings as well as the height information play an important role in e.g. lane-accurate self-localization of autonomous vehicles. In this paper, the overall task is divided into an automatic segmentation followed by a refined 3D reconstruction. For the segmentation task, we apply a wavelet-enhanced fully convolutional network on multi-view high-resolution aerial imagery. Based on the resulting 2D segments in the original images, we propose a successive workflow for the 3D reconstruction of road markings based on a least-squares line-fitting in multi-view imagery. The 3D reconstruction exploits the line character of road markings with the aim to optimize the best 3D line location by minimizing the distance from its back projection to the detected 2D line in all the covering images. Results show an improved IoU of the automatic road marking segmentation by exploiting the multi-view character of the aerial images and a more accurate 3D reconstruction of the road surface compared to the Semi Global Matching (SGM) algorithm. Further, the approach avoids the matching problem in non-textured image parts and is not limited to lines of finite length. In this paper, the approach is presented and validated on several aerial image data sets covering different scenarios like motorways and urban regions.

elib-URL des Eintrags:https://elib.dlr.de/125720/
Dokumentart:Zeitschriftenbeitrag
Titel:Deep-Learning segmentation and 3D reconstruction of road markings using multi-view aerial imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kurz, Franzfranz.kurz (at) dlr.dehttps://orcid.org/0000-0003-1718-0004NICHT SPEZIFIZIERT
Azimi, SeyedmajidSeyedmajid.Azimi (at) dlr.dehttps://orcid.org/0000-0002-6084-2272NICHT SPEZIFIZIERT
Sheu, Chun-Yuchun-yu.sheu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Angelo, PabloPablo.Angelo (at) dlr.dehttps://orcid.org/0000-0001-8541-3856NICHT SPEZIFIZIERT
Datum:18 Januar 2019
Erschienen in:ISPRS International Journal of Geo-Information
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:8
DOI:10.3390/ijgi8010047
Seitenbereich:Seiten 1-16
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2220-9964
Status:veröffentlicht
Stichwörter:Aerial Image Sequences, Road marking detection, 3D Line-features Reconstruction, Fully Convolutional Neural Network
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - Vabene++ (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Kurz, Dr.-Ing. Franz
Hinterlegt am:10 Jan 2019 11:33
Letzte Änderung:31 Okt 2023 15:13

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.