Caballero, Rafael und Zarzalejo, L.F. und Otero, Alvaro und Pinuel, Luis und Wilbert, Stefan (2018) Short term cloud nowcasting for a solar power plant based on irradiance historical data. Journal of Computer Science and Technology, 18 (3). Argentinian Universities Network with Computer Science Degree & Iberoamerican Science and Technology Education Consortium. doi: 10.24215/16666038.18.e21. ISSN 1666-6046.
| ![[img]](https://elib.dlr.de/style/images/fileicons/application_pdf.png) | PDF
 - Verlagsversion (veröffentlichte Fassung) 1MB | 
Offizielle URL: http://journal.info.unlp.edu.ar/JCST/article/view/1112
Kurzfassung
This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.
| elib-URL des Eintrags: | https://elib.dlr.de/125490/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | Short term cloud nowcasting for a solar power plant based on irradiance historical data | ||||||||||||||||||||||||
| Autoren: | 
 | ||||||||||||||||||||||||
| Datum: | 12 Dezember 2018 | ||||||||||||||||||||||||
| Erschienen in: | Journal of Computer Science and Technology | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Ja | ||||||||||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| Band: | 18 | ||||||||||||||||||||||||
| DOI: | 10.24215/16666038.18.e21 | ||||||||||||||||||||||||
| Herausgeber: | 
 | ||||||||||||||||||||||||
| Verlag: | Argentinian Universities Network with Computer Science Degree & Iberoamerican Science and Technology Education Consortium | ||||||||||||||||||||||||
| ISSN: | 1666-6046 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | cloud nowcasting, GHI, LSTM, supervised machine learning | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
| HGF - Programm: | Erneuerbare Energie | ||||||||||||||||||||||||
| HGF - Programmthema: | Konzentrierende solarthermische Technologien | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | E - Einfluss von Wüstenbedingungen (alt) | ||||||||||||||||||||||||
| Standort: | Köln-Porz | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Solarforschung > Qualifizierung | ||||||||||||||||||||||||
| Hinterlegt von: | Kruschinski, Anja | ||||||||||||||||||||||||
| Hinterlegt am: | 21 Dez 2018 13:44 | ||||||||||||||||||||||||
| Letzte Änderung: | 14 Dez 2019 04:25 | 
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags
 
		 
	 
		 Versenden
Versenden
				 Drucken
Drucken
				 
			