Caballero, Rafael und Zarzalejo, L.F. und Otero, Alvaro und Pinuel, Luis und Wilbert, Stefan (2018) Short term cloud nowcasting for a solar power plant based on irradiance historical data. Journal of Computer Science and Technology, 18 (3). Argentinian Universities Network with Computer Science Degree & Iberoamerican Science and Technology Education Consortium. doi: 10.24215/16666038.18.e21. ISSN 1666-6046.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: http://journal.info.unlp.edu.ar/JCST/article/view/1112
Kurzfassung
This work considers the problem of forecasting the normal solar irradiance with high spatial and temporal resolution (5 minutes). The forecasting is based on a dataset registered during one year from the high resolution radiometric network at a operational solar power plan at Almeria, Spain. In particular, we show a technique for forecasting the irradiance in the next few minutes from the irradiance values obtained on the previous hour. Our proposal employs a type of recurrent neural network known as LSTM, which can learn complex patterns and that has proven its usability for forecasting temporal series. The results show a reasonable improvement with respect to other prediction methods typically employed in the studies of temporal series.
elib-URL des Eintrags: | https://elib.dlr.de/125490/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Short term cloud nowcasting for a solar power plant based on irradiance historical data | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 12 Dezember 2018 | ||||||||||||||||||||||||
Erschienen in: | Journal of Computer Science and Technology | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 18 | ||||||||||||||||||||||||
DOI: | 10.24215/16666038.18.e21 | ||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||
Verlag: | Argentinian Universities Network with Computer Science Degree & Iberoamerican Science and Technology Education Consortium | ||||||||||||||||||||||||
ISSN: | 1666-6046 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | cloud nowcasting, GHI, LSTM, supervised machine learning | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
HGF - Programm: | Erneuerbare Energie | ||||||||||||||||||||||||
HGF - Programmthema: | Konzentrierende solarthermische Technologien | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Einfluss von Wüstenbedingungen (alt) | ||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Solarforschung > Qualifizierung | ||||||||||||||||||||||||
Hinterlegt von: | Kruschinski, Anja | ||||||||||||||||||||||||
Hinterlegt am: | 21 Dez 2018 13:44 | ||||||||||||||||||||||||
Letzte Änderung: | 14 Dez 2019 04:25 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags