elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Potential of Sentinel-1 time series for deforestation and forest degradation mapping in temperate and tropical forests

Urbazaev, Mikhail und Cremer, Felix und Schmullius, Christiane und Thiel, Christian (2018) Potential of Sentinel-1 time series for deforestation and forest degradation mapping in temperate and tropical forests. International Workshop on Retrieval of Bio- & Geo-physical Parameters from SAR Data for Land Applications, 2018-11-12 - 2018-11-15, Oberpfaffenhofen, Germany.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

In this study we investigated the potential of dense synthetic aperture radar (SAR) time series collected by the ESA’s Sentinel-1 satellites to detect deforestation and forest degradation areas. Since SAR data are affected by speckle, it is crucial to filter speckle before the time series analysis. Accordingly, we explored the potential of empirical mode decomposition (EMD), a data-driven approach to decompose the temporal signal into components of different frequencies. Based on the assumption that the high frequency components are corresponding to speckle, these effects can be isolated and removed. Since the EMD approach operates in the time domain only, it fully preserves the geometric resolution, which is required to detect small scale changes (e.g., forest degradation). We assessed the speckle filtering performance of the EMD approach. The results over forested areas showed similar statistics compared to the multi-temporal Quegan speckle filter in terms of speckle suppression (based on Equivalent Number of Looks) and an improved edge preservation. In the next step, we analyzed EMD filtered Sentinel-1 data for detection of deforestation and forest degradation areas. For this, we first selected forested, deforested and degraded areas based on visual interpretation of multi-temporal very high resolution (1 m) optical imagery over temperate and tropical forests of Mexico. Further, we plotted EMD filtered Sentinel-1 time series for the three reference classes and were able to determine the time frame of deforestation and forest degradation. The initial analyses showed promising results regarding the separation of forest and forest-change classes with EMD-filtered Sentinel-1 data in contrast to original SAR backscatter images. Furthermore, we present preliminary deforestation maps for study sites in Mexico and South Africa based on Bayesian probability approach and EMD-filtered Sentinel-1 time series backscatter. This study is supported by DLR in the Sentinel4REDD project (FKZ:50EE1540) to develop new remote sensing based methods using Sentinel-1 and Sentinel-2 data to support UNFCC (United Nations Framework Convention on Climate Change) REDD+ MRV (Measurement, Reporting and Verification) Systems.

elib-URL des Eintrags:https://elib.dlr.de/125413/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Potential of Sentinel-1 time series for deforestation and forest degradation mapping in temperate and tropical forests
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Urbazaev, MikhailFriedrich-Schiller-Universität Jenahttps://orcid.org/0000-0002-0327-6278NICHT SPEZIFIZIERT
Cremer, FelixFriedrich-Schiller-Universität JenaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schmullius, ChristianeFriedrich-Schiller-Universität JenaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Thiel, ChristianChristian.Thiel (at) dlr.dehttps://orcid.org/0000-0001-5144-8145NICHT SPEZIFIZIERT
Datum:2018
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Sentinel-1, time series, REDD+, empirical mode decomposition
Veranstaltungstitel:International Workshop on Retrieval of Bio- & Geo-physical Parameters from SAR Data for Land Applications
Veranstaltungsort:Oberpfaffenhofen, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:12 November 2018
Veranstaltungsende:15 November 2018
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):R - keine Zuordnung
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften > Bürgerwissenschaften
Hinterlegt von: Thiel, Christian
Hinterlegt am:25 Nov 2019 08:52
Letzte Änderung:24 Apr 2024 20:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.