elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Radiolytic H2 production on Noachian Mars: Implications for habitability and atmospheric warming

Tarnas, J.D. und Mustard, J.F. und Sherwood Lollar, B. und Bramble, M.S. und Cannon, K.M. und Palumbo, A.M. und Plesa, A.-C. (2018) Radiolytic H2 production on Noachian Mars: Implications for habitability and atmospheric warming. Earth and Planetary Science Letters, 502, Seiten 133-145. Elsevier. doi: 10.1016/j.epsl.2018.09.001. ISSN 0012-821X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0012821X18305326#!

Kurzfassung

Protected from harmful radiation, subfreezing temperatures, and low pressures, subsurface rock-hosted habitats provide potentially sustainable refugia for microbial ecosystems inside small rocky planets, such as Mars. For many chemolithotrophic communities on Earth, water–rock alteration reactions have been shown to produce the key electron donors and acceptors necessary to sustain microbial life on geologic timescales. Here we quantitatively demonstrate that radiolysis likely generated concentrations of dissolved H2 capable of sustaining microbial communities in the subsurface of Noachian Mars (3.7–4.1 Gyr ago). When considering an environment with H2O groundwater, dissolved H2 concentrations reach up to ∼55 mM in a cold early Mars climate scenario and ∼35 mM in a warm early Mars climate scenario; whereas when considering an environment with eutectic NaCl brine groundwater, dissolved H2 concentrations reach up to ∼85 mM in a cold early Mars climate scenario and ∼45 mM in a warm early Mars climate scenario. Specifically within the subsurface habitable zone, dissolved H2 concentrations range from ∼50–55 mM for a cold climate scenario with H2O groundwater. For a warm climate scenario with H2O groundwater, dissolved H2 concentrations within the subsurface habitable zone range from ∼1–30 mM. For a cold climate scenario with eutectic NaCl brine groundwater, dissolved H2 concentrations within the subsurface habitable zone range from ∼65–85 mM. For a warm climate scenario with eutectic NaCl brine groundwater, dissolved H2 concentrations within the subsurface habitable zone range from ∼1-40 mM. Radiolysis likely produced [1.3–4.8] × 1010 moles H2 per year globally during the Noachian depending on the assumed porosity and groundwater composition. Radiolytic H2, and CH4 derived from radiolytic H2, can be locked in hybrid clathrate hydrates within the cryosphere and released by large impacts, volcanism, or obliquity variations. This process could warm the Noachian climate to above-freezing temperatures, and we predict that ∼1–8 warming events would be possible during the Noachian and Hesperian solely from radiolytically produced H2. We demonstrate that the region immediately beneath the cryosphere, termed the subcryospheric highly-fractured zone (SHZ), likely contained dissolved H2 concentrations and temperatures suitable for life regardless of the background climate scenario, making it the most consistently habitable environment on ancient Mars in terms of reductant availability. Material from this zone can be exposed by faulting and in the ejecta and uplifts of impacts, making the SHZ a crucial astrobiological target for testing the subsurface biosphere hypothesis.

elib-URL des Eintrags:https://elib.dlr.de/125199/
Dokumentart:Zeitschriftenbeitrag
Titel:Radiolytic H2 production on Noachian Mars: Implications for habitability and atmospheric warming
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tarnas, J.D.Dept. of Geological Sciences, Brown University, Providence, RI, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mustard, J.F.Dept. of Geological Sciences, Brown University, Providence, RI, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sherwood Lollar, B.University of Toronto, Toronto, Ontario, CanadaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bramble, M.S.Brown University Department of Earth, Environmental and Planetary Sciences, 324 Brook St., Box 1846, Providence, RI 02912, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Cannon, K.M.University of Central Florida Department of Physics, Physical Sciences Building 430, 4111 Libra Drive, Orlando, FL 32816, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Palumbo, A.M.Brown University Department of Earth, Environmental and Planetary Sciences, 324 Brook St., Box 1846, Providence, RI 02912, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Plesa, A.-C.ana.plesa (at) dlr.dehttps://orcid.org/0000-0003-3366-7621NICHT SPEZIFIZIERT
Datum:2018
Erschienen in:Earth and Planetary Science Letters
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:502
DOI:10.1016/j.epsl.2018.09.001
Seitenbereich:Seiten 133-145
Verlag:Elsevier
ISSN:0012-821X
Status:veröffentlicht
Stichwörter:Noachian Mars, Radiolysis, Habitability
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Planetary Evolution and Life (alt), R - Exploration des Sonnensystems
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Hinterlegt von: Plesa, Dr. Ana-Catalina
Hinterlegt am:18 Dez 2018 09:47
Letzte Änderung:18 Dez 2018 09:47

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.