Rückriemen, T. und Breuer, D. und Spohn, T. (2018) Top-down freezing in a Fe-FeS core and Ganymede's present-day magnetic field. Icarus: International Journal of Solar System Studies, 307, Seiten 172-196. Elsevier. doi: 10.1016/j.icarus.2018.02.021. ISSN 0019-1035.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0019103517307029
Kurzfassung
Ganymede’s core most likely possesses an active dynamo today, which produces a magnetic field at the surface of ∼ 719 nT. Thermochemical convection triggered by cooling of the core is a feasible power source for the dynamo. Experiments of different research groups indicate low pressure gradients of the melting temperatures for Fe–FeS core alloys at pressures prevailing in Ganymede’s core ( < 10 GPa). This may entail that the core crystallizes from the top instead of from the bottom as is expected for Earth’s core. Depending on the core sulfur concentration being more iron- or more sulfur-rich than the eutectic concentration either snowing iron crystals or a solid FeS layer can form at the top of the core. We investigate whether these two core crystallization scenarios are capable of explaining Ganymede’s present magnetic activity. To do so, we set up a parametrized one-dimensional thermal evolution model. We explore a wide range of parameters by running a large set of Monte Carlo simulations. Both freezing scenarios can explain Ganymede’s present-day magnetic field. Dynamos of iron snow models are rather young ( < 1 Gyr), whereas dynamos below the FeS layer can be both young and much older ( ∼ 3.8 Gyr). Successful models preferably contain less radiogenic heat sources in the mantle than the chondritic abundance and show a correlation between the reference viscosity in the mantle and the initial core sulfur concentration.
elib-URL des Eintrags: | https://elib.dlr.de/125105/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Top-down freezing in a Fe-FeS core and Ganymede's present-day magnetic field | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juni 2018 | ||||||||||||||||
Erschienen in: | Icarus: International Journal of Solar System Studies | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 307 | ||||||||||||||||
DOI: | 10.1016/j.icarus.2018.02.021 | ||||||||||||||||
Seitenbereich: | Seiten 172-196 | ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
ISSN: | 0019-1035 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Ganymede, magnetic field, thermo-chemical evolution, Fe–FeS, core differentiation, top-down core crystallization | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Exploration des Sonnensystems | ||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung Institut für Planetenforschung > Planetenphysik | ||||||||||||||||
Hinterlegt von: | Rückriemen, Tina | ||||||||||||||||
Hinterlegt am: | 17 Dez 2018 08:54 | ||||||||||||||||
Letzte Änderung: | 02 Nov 2023 10:14 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags