elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Using Deep Learning neural networks to predict the interior composition of exoplanets

Baumeister, Philipp und Padovan, Sebastiano und Tosi, Nicola und Montavon, Grégoire (2018) Using Deep Learning neural networks to predict the interior composition of exoplanets. PLATO Theory Workshop 2018, 2018-12-03 - 2018-12-05, Cambridge, UK.

[img] PDF
1MB

Kurzfassung

One of the main goals in exoplanetary science is the interior characterization of observed exoplanets. A common approach to characterize the interior of a known exoplanet is the use of numerical models to compute an interior structure which complies with the measured mass and radius of the planet (Sotin et al. 2017, Seager et al. 2007). With only these two observables, possible solutions tend to be highly degenerate, with multiple, qualitatively different interior compositions that can match the observations equally well. Other potential observables include the Love number k2 (bearing information on the mass concentration in the interior of the planet), and the elemental abundances of the host star, which may be representative of those of the planet. We explore the application of a deep learning neural network to the interior characterization of exoplanets. We employ a simple 1D structure model to construct a large training set of sub-Neptunian exoplanets up to 20 Earth-masses. A model planet consists of five layers: an iron-rich core, a lower and upper silicate mantle, a water ice layer, and a gaseous H/He envelope. The size of each layer is constrained by prescribed mass fractions. Using a feedforward neural network trained on a large dataset of such modelled planets, we show that we can reasonably well predict the original model input parameters (core, mantle, ice layer and atmosphere mass fractions) from just mass, radius and the fluid Love number k2.

elib-URL des Eintrags:https://elib.dlr.de/125014/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Using Deep Learning neural networks to predict the interior composition of exoplanets
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Baumeister, Philippphilipp.baumeister (at) dlr.dehttps://orcid.org/0000-0001-9284-0143NICHT SPEZIFIZIERT
Padovan, SebastianoSebastiano.Padovan (at) dlr.dehttps://orcid.org/0000-0002-8652-3704NICHT SPEZIFIZIERT
Tosi, Nicolanicola.tosi (at) dlr.dehttps://orcid.org/0000-0002-4912-2848NICHT SPEZIFIZIERT
Montavon, GrégoireInstitut für Softwaretechnik und Theoretische Informatik, Technische Universität BerlinNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:3 Dezember 2018
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:exoplanets, interior structure, machine learning, neural networks
Veranstaltungstitel:PLATO Theory Workshop 2018
Veranstaltungsort:Cambridge, UK
Veranstaltungsart:Workshop
Veranstaltungsbeginn:3 Dezember 2018
Veranstaltungsende:5 Dezember 2018
Veranstalter :University of Cambridge (Institute of Astronomy)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Exploration des Sonnensystems
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Institut für Planetenforschung > Extrasolare Planeten und Atmosphären
Hinterlegt von: Baumeister, Philipp
Hinterlegt am:14 Dez 2018 08:32
Letzte Änderung:24 Apr 2024 20:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.