Savareh, Behrouz Alizadeh und Emami, Hassan und Hajiabadi, Mohamadreza und Azimi, Seyedmajid und Ghafoori, Mahyar (2019) Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm. Biomedical Engineering - Biomedizinische Technik, 64 (2), Seiten 1-11. de Gruyter. doi: 10.1515/bmt-2017-0178. ISSN 0013-5585.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
1MB |
Offizielle URL: http://dx.doi.org/10.1515/bmt-2017-0178
Kurzfassung
Purpose: Manual brain tumor segmentation is a challenging task that requires the use of machine learning techniques. One of the machine learning techniques that has been given much attention is the convolutional neural network (CNN). The performance of the CNN can be enhanced by combining other data analysis tools such as wavelet transform. Materials and methods: In this study, one of the famous implementations of CNN, a fully convolutional network (FCN), was used in brain tumor segmentation and its architecture was enhanced by wavelet transform. In this combination, a wavelet transform was used as a complementary and enhancing tool for CNN in brain tumor segmentation. Results: Comparing the performance of basic FCN architecture against the wavelet-enhanced form revealed a remarkable superiority of enhanced architecture in brain tumor segmentation tasks. Conclusion: Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.
elib-URL des Eintrags: | https://elib.dlr.de/124225/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Februar 2019 | ||||||||||||||||||||||||
Erschienen in: | Biomedical Engineering - Biomedizinische Technik | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 64 | ||||||||||||||||||||||||
DOI: | 10.1515/bmt-2017-0178 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-11 | ||||||||||||||||||||||||
Verlag: | de Gruyter | ||||||||||||||||||||||||
ISSN: | 0013-5585 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | brain tumor, convolutional neural network, segmentation, wavelet transform | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||||||||||
Hinterlegt am: | 19 Dez 2018 17:02 | ||||||||||||||||||||||||
Letzte Änderung: | 28 Feb 2020 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags