Azimi, Seyedmajid und Britz, Dominik und Engstler, Michael und Fritz, Mario und Mücklich, Frank (2018) Advanced Steel Microstructural Classification by Deep Learning Methods. Scientific Reports, 8 (2128), Seiten 1-14. Nature Publishing Group. doi: 10.1038/s41598-018-20037-5. ISSN 2045-2322.
PDF
- Nur DLR-intern zugänglich
2MB |
Offizielle URL: https://www.nature.com/articles/s41598-018-20037-5
Kurzfassung
The inner structure of a material is called microstructure. It stores the genesis of a material and determines all its physical and chemical properties. While microstructural characterization is widely spread and well known, the microstructural classification is mostly done manually by human experts, which gives rise to uncertainties due to subjectivity. Since the microstructure could be a combination of different phases or constituents with complex substructures its automatic classification is very challenging and only a few prior studies exist. Prior works focused on designed and engineered features by experts and classified microstructures separately from the feature extraction step. Recently, Deep Learning methods have shown strong performance in vision applications by learning the features from data together with the classification step. In this work, we propose a Deep Learning method for microstructural classification in the examples of certain microstructural constituents of low carbon steel. This novel method employs pixel-wise segmentation via Fully Convolutional Neural Network (FCNN) accompanied by a max-voting scheme. Our system achieves 93.94% classification accuracy, drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong performance of our method, this line of research offers a more robust and first of all objective way for the difficult task of steel quality appreciation.
elib-URL des Eintrags: | https://elib.dlr.de/124219/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Advanced Steel Microstructural Classification by Deep Learning Methods | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Februar 2018 | ||||||||||||||||||||||||
Erschienen in: | Scientific Reports | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 8 | ||||||||||||||||||||||||
DOI: | 10.1038/s41598-018-20037-5 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-14 | ||||||||||||||||||||||||
Verlag: | Nature Publishing Group | ||||||||||||||||||||||||
ISSN: | 2045-2322 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Deep Learning, microstructure, classification | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | Zielske, Mandy | ||||||||||||||||||||||||
Hinterlegt am: | 10 Dez 2018 10:55 | ||||||||||||||||||||||||
Letzte Änderung: | 02 Nov 2023 11:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags