elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A probabilistic framework for traffic data quality

Ebendt, Rüdiger und Neumann, Thorsten (2018) A probabilistic framework for traffic data quality. Transport Research Arena 2018, 2018-04-16 - 2018-04-19, Wien, Österreich. doi: 10.5281/zenodo.1440850.

[img] PDF
342kB

Offizielle URL: https://doi.org/10.5281/zenodo.1440850

Kurzfassung

Regarding the assessment of traffic data in ITS, there is an increasing need for answers to the following questions: (i) What exactly is "traffic data quality"?, and, related to that, (ii) There are too many ways to define and to do things, and results of different researchers are inconsistent or not comparable. How can we overcome this situation? With that background, an important aim of the ongoing DLR-project I.MoVe is to develop a consistent understanding of traffic data quality, together with a unified framework for its assessment. To this end, a probabilistic framework for traffic data quality is provided in this paper. Real-world examples from I.MoVe demonstrate its application for the assessment of data sources like induction loops, stationary bluetooth sensors and floating car data (FCD). A first important point is to distinguish strictly between quality indices, quality requirements, and quality itself. While the present framework develops quality indices based on established quality criteria like accuracy, completeness, validity, and coverage, the usual understanding of quality is extended to a probabilistic view. This also addresses the problem of information retrieval in the presence of vagueness and uncertainty. The provided examples are making full use of the proposed framework, and also constitute interesting results for the practitioner by themselves. Examples include the assessment of induction loop count data, and assessing the temporal coverage of a stretch of road with stationary bluetooth data, or of the whole city of Berlin, Germany with FCD.

elib-URL des Eintrags:https://elib.dlr.de/123895/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:A probabilistic framework for traffic data quality
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ebendt, RüdigerRuediger.Ebendt (at) dlr.dehttps://orcid.org/0000-0002-3565-7024NICHT SPEZIFIZIERT
Neumann, ThorstenThorsten.Neumann (at) dlr.dehttps://orcid.org/0000-0002-9236-0585NICHT SPEZIFIZIERT
Datum:2018
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.5281/zenodo.1440850
Seitenbereich:Seiten 1-10
Status:veröffentlicht
Stichwörter:quality, traffic data quality, probability theory, probabilistic framework
Veranstaltungstitel:Transport Research Arena 2018
Veranstaltungsort:Wien, Österreich
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:16 April 2018
Veranstaltungsende:19 April 2018
Veranstalter :Austrian Ministry for Transport, Innovation and Technology, AIT, Austriatech
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - I.MoVe (alt)
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Verkehrssystemtechnik
Hinterlegt von: Ebendt, Dr.rer.nat. Rüdiger
Hinterlegt am:11 Dez 2018 12:57
Letzte Änderung:24 Apr 2024 20:27

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.