Bartz, Hannes und Wachter-Zeh, Antonia (2018) Efficient Decoding of Interleaved Subspace and Gabidulin Codes beyond their Unique Decoding Radius Using Gröbner Bases. Advances in Mathematics of Communications, 12 (4). American Institute of Mathematical Sciences. doi: 10.3934/amc.2018046. ISSN 1930-5346.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
An interpolation-based decoding scheme for L-interleaved subspace codes is presented. The scheme can be used as a (not necessarily polynomial-time) list decoder as well as a polynomial-time probabilistic unique decoder. Both interpretations allow to decode interleaved subspace codes beyond half the minimum subspace distance. Both schemes can decode γ insertions and δ deletions up to γ + Lδ ≤ L(nt − k), where nt is the dimension of the transmitted subspace and k is the number of data symbols from the field Fqm. Further, a complementary decoding approach is presented which corrects γ insertions and δ deletions up to Lγ +δ ≤ L(nt −k). Both schemes use properties of minimal Gr¨obner bases for the interpolation module that allow predicting the worst-case list size right after the interpolation step. An efficient procedure for constructing the required minimal Gr¨obner basis using the general K¨otter interpolation is presented. A computationally- and memory-efficient root-finding algorithm for the probabilistic unique decoder is proposed. The overall complexity of the decoding algorithm is at most O(L2n2 r) operations in F qm where nr is the dimension of the received subspace and L is the interleaving order. The analysis as well as the efficient algorithms can also be applied for accelerating the decoding of interleaved Gabidulin codes.
elib-URL des Eintrags: | https://elib.dlr.de/123884/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Efficient Decoding of Interleaved Subspace and Gabidulin Codes beyond their Unique Decoding Radius Using Gröbner Bases | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | November 2018 | ||||||||||||
Erschienen in: | Advances in Mathematics of Communications | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 12 | ||||||||||||
DOI: | 10.3934/amc.2018046 | ||||||||||||
Herausgeber: |
| ||||||||||||
Verlag: | American Institute of Mathematical Sciences | ||||||||||||
Name der Reihe: | Advances in Mathematics of Communications | ||||||||||||
ISSN: | 1930-5346 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Subspace Codes, Rank-metric Codes, Interleaved Gabidulin Codes, Probabilistic Unique Decoding, Interpolation-Based Decoding. | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||
HGF - Programmthema: | Luftverkehrsmanagement und Flugbetrieb | ||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
DLR - Forschungsgebiet: | L AO - Air Traffic Management and Operation | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Kommunikation, Navigation und Überwachung (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Satellitennetze | ||||||||||||
Hinterlegt von: | Bartz, Hannes | ||||||||||||
Hinterlegt am: | 28 Nov 2018 15:36 | ||||||||||||
Letzte Änderung: | 22 Nov 2023 06:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags